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Abstract
Magnetic Particle Imaging (MPI) achieves a high temporal resolution, which opens up a wide range of real-time
medical applications such as device tracking and navigation. These applications usually rely on automated tech-
niques for finding and localizing devices and fiducial markers in medical images. In this work, we show that
submillimeter-accurate automatic marker localization from low gradient MPI tomograms with a spatial resolution
of several millimeters is possible. Markers are initially identified within the tomograms by a thresholding-based
segmentation algorithm. Subsequently, their positions are accurately determined by calculating the center of mass
of the voxel intensities inside the pre-segmented regions. A series of phantom measurements taken at full temporal
resolution (46 Hz) is used to analyze statistical and systematical errors and to discuss the performance and stability
of the automatic submillimeter-accurate marker localization algorithm.

I. Introduction

Magnetic Particle Imaging (MPI) is a 3D tomographic
imaging modality [1] visualizing the spatial distribution
of superparamagnetic iron oxide nanoparticles (SPIOs).
MPI has a high temporal resolution [2], a high sensitivity
with a detection limit of few nanograms iron [3, 4], and
is free of ionizing radiation. Besides oncological appli-
cations like cell tracking [4–6] the high imaging speed
renders MPI promising for interventional applications,
where nowadays the X-ray-based digital subtraction an-
giography (DSA) is the method of choice [7]. The suit-
ability of MPI for interventional applications was exam-
ined in [8], where a catheter was coated with SPIOs and
imaged in real-time with MPI. Dedicated real-time re-

construction algorithms were discussed in [9]. In [10],
MPI was used for the treatment of stenosis in a vessel
phantom, whereas in [11], it was shown that vessels and
instruments can be separately visualized by applying
multi-spectral imaging techniques [12].

Interventional applications, however, require accu-
rate localization of (coated) medical instruments or fidu-
cial markers [13]. One way to achieve this goal is to per-
form imaging with high spatial resolution, which in MPI
mainly depends on the tracer performance and the gra-
dient strength of the selection field. Tracer performance
has improved significantly over the last years [14]. How-
ever, the resolution gain, which can be achieved using
tailored MPI tracers, is limited by physical constraints
[15, 16]. For high gradient fields in the range of 5.5 T m−1

to 7 T m−1, a spatial resolution higher than 1 mm has
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been reported [17, 18]. Recent experimental setups even
described gradient fields of up to 85 T m−1, providing
resolutions in µm range [19].

However, for clinical MPI scanners, the gradient
strength of about 1 T m−1 to 3 T m−1 will be challenging to
realize, at least for the current scanner designs, due to the
electrical power loss of the field generating coils. A rough
prediction of the achievable resolution has been given
in [20], with a refinement proposed in [21]. But even
1 mm spatial resolution as achieved in [17] for 5.5 T m−1

still does not compete with spatial resolutions in DSA,
making accurate instrument localization challenging.

In other imaging modalities such as CT and MRI, au-
tomated subpixel-accurate localization approaches have
been successfully applied to circumvent this problem
[22]. Thus, the purpose of this work is to analyze and
illustrate feasibility of subpixel-accurate – i.e. in this case
submillimeter-accurate – automatic marker localization
in low spatial resolution MPI data. Therefore, a preclin-
ical MPI scanner at full temporal resolution is used to
mimic the scenario of labeled catheters within an inter-
ventional MPI setup.

II. Material and Methods

II.I. Experimental Setup
All MPI measurements are performed with a preclini-
cal MPI scanner (Philips/Bruker). The scanner drives
a field free point along a 3D Lissajous trajectory with
drive field coils in x -, y -, and z -direction. The excita-
tion of each coil is sinusoidal with an amplitude of 14 mT
and frequencies of fx = 2.5/102 MHz, fy = 2.5/96 MHz,
and fx = 2.5/99 MHz, respectively. The chosen frequen-
cies result in a cycle period length for a single frame of
21.54 ms and a respective imaging frame rate of 46.43 Hz.
The selection field is set to a gradient of 1.5 T m−1 in z -
direction and 0.75 T m−1 in x - and y -directions. With
these parameters the Lissajous trajectory covers a drive
field field of view of 37.3 mm×37.3 mm×18.7 mm.

Prior to reconstruction, a system matrix is acquired in
a calibration scan. A 2 mm×2 mm×1 mm delta sample
containing 4µL ferucarbotran (Resovist, Irom Pharma-
ceuticals, Tokio, Japan) with an iron concentration of
83 mmolL−1 is moved to 20× 20× 20 equidistant posi-
tions in a 40 mm×40 mm×20 mm field of view. At each
position, the response of the delta sample is recorded for
30 Lissajous cycles.

II.II. Image Reconstruction
3D MPI tomograms are reconstructed using the algebraic
approach [23], where the system matrix S is measured
using a delta sample. The voltages measured during the
MPI experiments in the receive coils are Fourier trans-
formed and frequencies below 80 kHz are discarded in

a post processing step. This is because frequencies be-
low 80 kHz carry unpredictable background signal that
cannot be reliably subtracted for the MPI scanner consid-
ered in this work. In addition, we apply an SNR thresh-
old of 3 to remove noisy system matrix rows using the
frequency selection algorithm discussed in [17]. The fre-
quency component vectors si of each position form the
columns of the system function S .

The MPI tomogram I can be obtained using a first-
order Tikhonov-regularized least squares approach

I = argmin
ζ
‖Sζ− û‖2

2+ λ̃‖ζ‖
2
2, (1)

where û is the Fourier transform of measured time data
u . Instead of λ̃, one usually reports λ = λ̃

λ0
where

λ0 = trace(S ∗S )N −1 and N is the length of the vector ζ.
The optimization problem (1) is solved in this work by the
iterative Kaczmarz algorithm using 3 iterations. The in-
fluence of the regularization parameter λ can be seen in
Fig. 1. Whenλ is chosen too small, artifacts appear in the
image. Increasing λ reduces the artifacts but smoothes
the data leading to a loss of resolution. For the considered
data, we found that λ= 0.01 leads to a good compromise
between a too noisy and an over-smoothed image.

We note that the spatial resolution in terms of the
FWHM estimated from our data for λ= 0.01 is 6.3 mm,
8.0 mm, and 3.7 mm in x -, y -, and z -direction, respec-
tively. This well agrees with the corresponding predicted
values of 5.97 mm, 5.97 mm, and 2.99 mm when consid-
ering particles of 25 nm core diameter using the resolu-
tion formula introduced in [20]. Differences of x - and
y -resolutions are related to the fact that our x - and y -
receive channels have different characteristics, which
influences the reconstruction process.

λ= 0.0 λ= 0.01 λ= 0.05

6 mm

Figure 1: Influence of the regularization parameter λ on
the reconstruction result. The delta sample is shown in
cropped xy-slices within a 3D MPI tomogram with FOV of
37.3 mm×37.3 mm×18.7 mm. From left to right, the tomo-
grams were reconstructed with regularization parametersλ= 0,
0.01, and 0.05. Without regularization (i.e. λ = 0), the image
of the marker contains a lot of noise. The central image with
λ = 0.01 provides a good compromise between noise reduc-
tion and spatial resolution. The right image contains nearly
no noise but suffers from a loss of spatial resolution due to the
over-regularization.
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II.III. Automatic Marker Localization
In our setup, even small changes in the position of a
marker lead to slight changes in the image intensities
and their spatial distribution within the reconstructed to-
mograms as shown in Fig. 2. This motivates transferring
established intensity-based subpixel-accurate marker
detection approaches to the task at hand. In particular,
we focus on and evaluate the well-known intensity cen-
troiding approach that has been described to be success-
fully applied to various imaging modalities and (medical)
applications [24, 25].

We consider a dynamic MPI experiment where
I :Ωs ×R→R (Ωs ⊂R3) represents the set of all MPI to-
mograms reconstructed from the dynamic measurement,
i.e. I (x , t ) represents the reconstructed particle concen-
tration at spatial position x and time t . Then, the pro-
posed automatic marker localization is performed in
three steps. At first, a threshold filter is applied to each
tomogram in order to separate markers (high image in-
tensity structures) from background. This results in the
data set I segBin :Ωs ×R→Rwith

I segBin(x , t ) =

¨

1 if I (x , t )≥Θ ·max
x

I (x , t )

0 otherwise,
(2)

where Θ ∈ [0, 1] denotes the relative threshold. The visu-
alization of a filtered and unfiltered tomogram can be
found in Fig. 3. The reference xy-slice is unfiltered, and
the other images correspond to filtered versions of the
same slice with relative thresholds ofΘ = 0.1, 0.3, 0.5, 0.7,
and 1.0.

In a second step, connected regions Ωt
l ⊆ Ωs ,

l ∈ {1, 2, . . . , L t } are identified by connected-component
labeling of I segBin(Ωs , t ), t ∈R. The regions are ordered
with respect to the maximal intensity value within the
region: max I (Ωt

1, t )≥max I (Ωt
2, t )≥ · · · ≥max I (Ωt

L t
, t ).

Finally, it is assumed that K < L t , where K is the num-
ber of markers, and the markers correspond to the first K
ordered regions. The position of each of the K markers
1≤ k ≤ K is obtained by calculating the center of mass
of the voxel intensities of the corresponding connected
region in the MPI tomogram I

ck (t ) =

∫

Ωt
k

x · I (x , t )dx
∫

Ωt
k

I (x , t )dx
. (3)

II.IV. Evaluation
Let rk : R → R3 be the true position of marker k and
ti , 1 ≤ i ≤ N be the points in time for which a tomo-
gram has been reconstructed. Then, the localization
error δk = (δx

k ,δy
k ,δz

k ) is given by the difference between
true and calculated position

δk (ti ) = rk (ti )− ck (ti ). (4)

y = 1.0 mm y = 0.0 mm y =−1.0 mm

6 mm

Figure 2: The delta sample is shown in cropped
xy-slices within a 3D MPI tomogram with FOV of
37.3 mm×37.3 mm×18.7 mm. From left to right, the
marker was positioned at y = 1 mm, 0 mm and −1 mm with
fixed x - and z -position. Although each voxel has a length of
2 mm in y -direction, changes in the signal distribution within
the gray scale images can be perceived.

In general, this error is the superposition of a statistical
error and a systematic error; both of which may vary in
time and depend on the spatial position.

To estimate the systematic error as a function of the
marker position we average δk for all T x

k = {ti |rk (ti ) = x }
to obtain

µαk (x ) =
1

|T x
k |

∑

t ∈T x
k

δαk (t ), (5)

where α= x , y , and z . The corresponding statistical er-
ror can be estimated by the spatially dependent standard
deviation

σαk (x ) =

√

√

√

1

|T x
k |

∑

t ∈T x
k

�

δαk (t )−µ
α
k (x )

�2
. (6)

II.V. Sample Positioning

The preclinical MPI scanner used in this work is equipped
with a 3 axes robot (Isel Automation GmbH). A 46.5 cm
long fiberglas arm with diameter of 10 mm is mounted at
the robot. At the tip of the arm, small tracer samples and
other phantoms can be placed. The robot with the arm
attached can be moved in three orthogonal directions
(x ,y ,z ) with a step size of 6.25µm, allowing for precise
and reproducible phantom placement during MPI mea-
surements and for sampling the system matrix during the
calibration procedure. The sample used during this cali-
bration procedure is referred to as delta sample. Hence-
forth, all directions and coordinates will be provided in
the robot coordinate system.

By using the calibration approach for image recon-
struction, the image coordinate system and the robot
coordinate system are automatically aligned. The ori-
gin of the robot coordinate system is set such that a
2 mm×2 mm×1 mm delta sample mounted at the tip
of the arm is centered in the drive field field of view.
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Reference Θ = 0.1 Θ = 0.3

Θ = 0.5 Θ = 0.7 Θ = 1.0

12 mm

Figure 3: The delta sample is shown in xy-slices within a 3D
MPI tomogram with FOV of 37.3 mm×37.3 mm×18.7 mm. In-
fluence of the threshold Θ on the segmentation. The image
in the top left corner is a reference tomogram obtained by re-
construction with λ = 0.01. All other images were obtained
from the reference by applying a threshold filter with relative
threshold Θ = 0.1, 0.3, 0.5, 0.7, and 1.0. For segmentation a
threshold Θ of 0.3 was chosen.

II.VI. Marker Phantoms

We use two phantoms in our experiments. First, a
single-marker-phantom consisting of the delta sample
mounted at the tip of the robot arm. Throughout all ex-
periments where the single-marker-phantom is used, the
robot coordinates provide ground truth for the marker
position.

marker c1, c2, and c3

Figure 4: Multi-marker phantom, containing three markers
in a triangular arrangement.

Besides the delta sample, we use a multi-marker
phantom containing three markers (c1, c2, and c3) in a
triangular arrangement as shown in Fig. 4. Each marker

consists of a spherical sample of 2.85 mm diameter, con-
taining 7.27µL ferucarbotran with an iron concentration
of 83 mmolL−1. During measurement, the phantom is
mounted on the robot arm. The center of mass locations
r1, r2, and r3 of the markers c1-3 are unknown, but their
respective distances d12 = ‖r1 − r2‖2, d13 = ‖r1 − r3‖2,
an d23 = ‖r2 − r3‖2 can be estimated from the 3D CAD
drawing of the phantom as listed in Tab. 1. Our estima-
tion takes into account the 3D printing by selective laser
sintering (SLS), which has a precision of ±0.1 mm, the
manufacturing tolerance of the glass sphere holding the
tracer, and the fixation error of spheres within the socket,
which is negligible low.

Table 1: Distances between center positions known from
model.

d12 d13 d23

Distance [mm] 9.2±0.3 17.3±0.3 14.1±0.3

II.VII. Experiments

To analyze feasibility and accuracy of the automated
marker localization, we conduct a series of experiments
using the single-marker-phantom. Additional experi-
ments with the three-marker-phantom aimed to fur-
ther illustrate feasibility of reliable marker identification
and localization in more complex multi-marker arrange-
ments.

For the first experiment the single-marker-phantom
is placed at the origin r1 = 0 of the robot coordinate sys-
tem and a series of 4000 Lissajous cycles is measured.
In a second experiment, the single-marker-phantom is
moved to 100 positions within the drive field field of view.
The positions were chosen randomly prior to the exper-
iment. At each position, a series of 100 cycles is mea-
sured. In the last experiment the three-marker-phantom
is moved to 100 positions in such that all markers were
located inside the field of view during the entire mea-
surement series. Again, the positions were chosen at
random prior to the experiment, and a series of 100 MPI
measurements was obtained at each position.

III. Results

III.I. Experiment 1: Systematic Error
and Statistical Error

From the first experiment, a sequence of 4000 tomo-
grams was obtained, from which the single marker cen-
ter of mass positions and the corresponding localiza-
tion errors δ1(ti ), 1 ≤ i ≤ 4000 were computed for 101
equidistantly-spaced relative segmentation thresholds
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Θ µx
1 ±σ

x
1 [mm] µ

y
1 ±σ

y
1 [mm] µz

1 ±σ
z
1 [mm]

0.1 0.04±0.02 0.05±0.02 −0.02±0.01
0.3 0.02±0.02 0.07±0.04 −0.07±0.02
0.5 −0.01±0.04 0.05±0.03 −0.05±0.02
0.7 0.02±0.02 0.06±0.07 0.07±0.02
1.0 0.36±0.30 −0.19±0.29 0.10±5.34

Table 2: Estimates of the systematic and the correspond-
ing statistical localization error µ1 and σ1 for several relative
thresholds and the first experiment using the single-marker-
phantom.

Θ ∈ [0, 1]. For Θ = 0.3, the x -, y -, and z -component of
the localization error are visualized in Fig. 5 for every
25th frame.

From δ1(ti ), the systematic and the statistical local-
ization errors µ1 andσ1 were estimated. A small fraction
of these errors is given in Tab. 2 for relative thresholds
Θ = 0.1, 0.3, 0.5, 0.7, and 1.0. Our analysis shows that for
all Θ there is a systematic deviation in the marker local-
ization, which cannot be explained by the corresponding
statistical error. An in depth analysis of the localization
errorδ1(ti ) reveals that the underlying distribution varies
strongly with the relative threshold Θ. The distribution
might be mono-modal as shown in Fig. 6a for Θ = 0.1 or
overlaying multi-modal in one or more components as
can be seen in Fig. 6b for Θ = 0.3.
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Figure 5: A scatter plot shows the localization error in x -, y -,
and z -direction for the relative threshold Θ = 0.3. For reasons
of clarity, only every 25th point is plotted.

III.II. Experiment 2: Temporal and
Spatial Dependence of the
Systematic Error

From the second experiment, a data set of 100 × 100
frames was reconstructed, 100 frames at each random
robot position rm , 1≤m ≤ 100. As in the first experiment,
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(a) Distribution of δ1 for Θ = 0.1.
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(b) Distribution of δ1 for Θ = 0.3.

Figure 6: These histograms show the distribution of the local-
ization error within the first experiment for two relative thresh-
olds Θ.

the single marker was localized and the corresponding
localization error δ1 was calculated for each frame using
a relative threshold of Θ = 0.3. The relative threshold
was chosen heuristically and it ensures the comparabil-
ity between Experiment 2 and 3. For a small fraction
of 9 permille of frames, the automatic marker localiza-
tion deviated from the ground truth position by more
than 1 mm. A detailed analysis of these frames revealed a
faulty recognition of the brightest pixel as the marker due
to strong noise in these tomograms. These frames were
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removed from the dataset and not taken into considera-
tion for calculation of the statistics. Then, the systematic
and statistical errors µ1(r ) andσ1(r )were estimated for
each random position rm . Similar to the first experiment,
the statistical error is small compared to the systematic
deviation ‖σ1(rm )‖2 � ‖µ1(rm )‖2. Henceforth, we will
therefore focus on the systematic error µ1(rm ).

At first, the µ1(rm ) were ordered with respect to the
data acquisition time, i.e. according to m as shown
in Fig. 7. A large spread in the systematic deviation
of the x -position µx

1 (rm ) and y -position µy
1 (rm ) was

observed compared to the component µz
1 (rm ). In de-

tail, the component-wise error bounds were −0.42 mm≤
µx

1 (rm ) ≤0.57 mm, −0.38 mm≤ µy
1 (rm ) ≤0.50 mm, and

−0.14 mm≤µy
1 (rm )≤0.17 mm, and the absolute system-

atic error was bounded by ‖µ1‖2 ≤0.7 mm.
The total measurements took 400 s. Within our mea-

surement data a minor temporal drift was observed. By
binning the data into groups of 10 consecutive positions
respectively, a systematic non linear drift of the mean
of µz

1 (rm ) by about 0.15 mm was discovered throughout
the entire measurement. The other components experi-
enced no such significant temporal drift. Note that no
correction of the temporal drift was performed.

Next, the spatial dependence of the systematic er-
ror µ1 was investigated. Fig. 8 shows all three com-
ponents of the systematic error plotted against the x -
component of the robot position of the single-marker-
phantom. Clearly, µx

1 varies with the x -component,
which provides an explanation for the larger spread in
the time-ordered data in Fig. 7. To verify our assumption,
our data set was split into two subsets. The first contains
the data c1, c3, . . . , c99 corresponding to odd numbered
random positions r1, r3, . . . , r99. The second contains the
data corresponding to even numbered random positions.
The first subset is used to fit a linear modelµ1(c ) = Ac +b
to our data. We find that

A =





0.024 0 0
0 −0.013 0
0 0 0



 , b =





0.06 mm
0.06 mm
0.00 mm



 , (7)

where all coefficients obtained from linear regression
with an absolute t-value less than 3.2 were set to zero.
Note that the standard deviation of the coefficients in A
and b is of the order of the last digit provided.

Applying the linear model as a first-order correction
to the marker localization ck 7→ ck+Ack+b to the second
subset, we find that the systematic error for the corrected
data drops considerably. In this case, the error bounds for
the component-wise errors were reduced to −0.20 mm≤
µx

1 (rm ) ≤0.34 mm, −0.20 mm≤ µy
1 (rm ) ≤0.25 mm, and

−0.11 mm≤µy
1 (rm )≤0.12 mm, and for the absolute sys-

tematic error to ‖µ1‖2 ≤0.4 mm. Cross-validation of the
linear model using the second corrected data set yielded
no coefficients with absolute t-value above 3.2.
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Figure 7: The systematic error ordered with respect to time.
During the second experiment, the robot was moved to the
random positions rm .
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Figure 8: The three spatial components of the systematic error
µx

1 , µy
1 and µz

1 are ordered with respect to the x -component
of the robot position of the single-marker-phantom. One ob-
serves a strong correlation between µx

1 and x .

III.III. Experiment 3: Localization of
Multiple Markers in a
Multi-Marker Phantom

In the last experiment, the multi-marker phantom was
positioned at 100 randomly generated positions rm ,
1≤m ≤ 100 chosen such that the all markers were in-
side the field of view during the entire experiment. As in
the last experiment, 100 frames 1 ≤ p ≤ 100 were mea-
sured at each random position. Similar to the last experi-
ment, the position of each marker c1(m , p ), c2(m , p ), and
c3(m , p )was obtained for the p -th tomogram measured
at position rm for a relative threshold of Θ = 0.3. For
this particular experiment the choice of Θ is restricted.
For too small values, e.g. Θ = 0.1, the markers c1 and
c2 are indistinguishable by our simple computer vision
algorithm.

The marker positions were used to obtain estimates of
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the marker distances d12(m , p ) = ‖c1(m , p )− c2(m , p )‖2,
d13(m , p ) = ‖c1(m , p ) − c3(m , p )‖2, and d23(m , p ) =
‖c2(m , p )− c3(m , p )‖2 for each tomogram as shown in
Fig. 9. We did apply the corrections of the marker po-
sition obtained in the second experiment prior to the
distance estimations.

A closer analysis reveals that the multi-marker phan-
tom was not correctly recognized in a fraction of
2 permille of the tomograms. Here, the multi-marker
phantom was interpreted as correctly recognized if none
of the distance estimates deviate by more than 1 mm
from the ground truth distances given in Tab. 1. We found
that a faulty recognition is mainly caused by our localiza-
tion algorithm, which sorts the initially identified high-
intensity connected components with respect to their
brightest pixel while assuming the markers correspond to
these connected components. In a small fraction of the
tomograms, a noise pixel was falsely identified as marker.
With these outliers removed from our dataset, we find
that the marker distances are estimated to an average
of d12 = 9.6±0.3mm (9.6±0.3mm), d13 = 17.1±0.3mm
(17.3±0.3mm), and d23 = 14.3±0.3mm (14.3±0.3mm),
which is in good agreement with the estimates from the
3D CAD drawing of our phantom which are shown in
Tab. 1. The marker distances in brackets are not corrected
with the linear model. The reconstructed 3D tomogram
of the multi-marker phantom and its maximum intensity
projections can be seen in Fig. 10.
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Figure 9: A scatter plot shows the estimated marker distances
of the multi-marker phantom. For reasons of clarity, only esti-
mates from the first frame recorded at a random position are
shown.

IV. Discussion and Conclusion

We provided a proof of principle that automatic and re-
liable marker localization within a time series of MPI
tomograms measured at a rate of 46 tomograms per sec-
ond is possible.

z

x

z

y

x

y 8 mm

Figure 10: A reconstructed 3D tomogram of the multi-marker
phantom is shown as a maximum intensity projection for the xz-
, yz- and xy-plane. In the lower left image the 3D tomogram is
depicted as 3D rendering. The estimated marker distances are
d12 = 9.6±0.3mm, d13 = 17.1±0.3mm and d23 = 14.3±0.3mm.

Recall that our system was operated at a low field gra-
dient of 1.5 T m−1 in z -direction and 0.75 T m−1 in x - and
y -direction as well as a drive field amplitude of 14 mT.
From our image data, we estimated the spatial resolu-
tion of the reconstructed MPI tomograms to be 6.0 mm,
7.1 mm, and 2.9 mm. The analysis of our second exper-
iment revealed that a submillimeter-accurate localiza-
tion with an accuracy of about ±0.27 mm in x - and y -
direction and ±0.12 mm in z -direction can be achieved.
This marks a more than 10-fold increase compared to
the spatial resolution of our MPI system.

As our MPI tomograms contain some noise the very
basic marker recognition used here infrequently identi-
fies noise voxels as marker. Overall, however, the marker
recognition has proved to be very robust. The recogni-
tion failure rate for the single-marker is only 9 permille
and only 2 permille for a multi-marker phantom contain-
ing three markers. The underlying noise is likely to orig-
inate from our MPI scanner hardware. To compensate
faulty recognition one could either recognize these noisy
frames by a noise analysis or use more stable algorithms
like template matching for marker localization.

The localization algorithm used in this work depends
on a threshold parameter Θ. The choice of Θ was mainly
limited by the multi-marker phantom, where markers
could no longer be discriminated for small values. Hence
the parameter was chosen heuristically to be Θ = 0.3
around which its influence on the localization result was
very small. However, this parameter is algorithm specific
and hence can be avoided by using more sophisticated
computer vision algorithms.

A detailed analysis of the of the systematic localiza-
tion error revealed a small non linear temporal drift and
spatial dependence of this error. First order corrections
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of the spatial dependence could significantly reduce the
systematic localization error down to 0.4 mm. Possible
sources of this error could be slight differences in the
thermal or magnetic state of the MPI scanner during sys-
tem matrix acquisition and marker measurements. In
order to gain confidence in the automated marker local-
ization further investigations of this issue are required.
Though, even without a correction of these temporal and
spatial deviations the main result of our work remains
valid.

Although in the current study marker localization has
been performed off-line, i.e. after data acquisition, real-
time marker localization is feasible since the marker lo-
calization took about 1.3 ms per frame compared to the
21.54 ms cycle lenght per frame. Therefore, we believe
that an automatic submillimeter-accurate marker local-
ization at high temporal resolutions will be useful for
medical real-time applications such as device tracking
and navigation, which would otherwise be limited by
the low spatial resolution of MPI. Using MPI for human
real-time applications, the size of the field of view will
be a limited due to the drive field strength exceeding
the safety constraints of the peripheral nerve stimula-
tion (PNS) [26]. With higher excitation frequencies the
safety constraints of the PNS can be extended but then
the specific absorption rate (SAR) becomes a limiting
factor [27]. This might restrict the usage of MPI in e.g.
interventional applications. To circumvent these limita-
tions, an automatic instrument localization can be used
to continuously shift the field of view to follow the in-
strument movement. A robust instrument localization
algorithm as proposed in this work is essential within
such a real-time imaging setup.
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