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Abstract
The conventional magnetic particle imaging reconstruction methods use observed signals and system functions,
which result in an enormous amount of data and long processing time being required to reconstruct large image
matrices. We propose a new image reconstruction method that uses less data and a limited number of orthogonal
bases obtained via the singular value decomposition (SVD) of selected point spread functions (PSFs). By using
the features of the diagonal and nondiagonal elements of a singular value matrix, image blurring and artifacts
can be reduced in the reconstructed image. This is because the diagonal components commonly indicate the
similarities between each orthogonal basis for the system function and an observed signal, whereas the nondiagonal
components indicate the differences of both them. In this paper, we use numerical analyses to demonstrate that
image reconstruction is possible by using effective orthogonal bases obtained through the SVD of a limited number
of PSFs selected from a general system function. The reconstruction time is reduced to 1/12th to 1/50th of that of
the conventional method.

I. Introduction
Magnetic particle imaging (MPI) has been proposed as a
medical imaging technology that facilitates the early di-
agnosis of serious illnesses such as cancer or cardiovascu-
lar diseases [1]. In the conventional MPI reconstruction
methods, the magnetic nanoparticle (MNP) distribution
is typically reconstructed by applying an inverse problem
analysis to a system function and observed signals [2].
In contrast, in a previous work, we had proposed an im-
age reconstruction method that uses orthogonal bases

derived from singular value decomposition (SVD) [3, 4].
In our method, SVD was used to expand the individual
delta responses (in the following text, they are refered to
as point spread functions (PSFs)) used to generate the
system functions obtained from the MNPs, which were
arranged at each matrix position of an image.

By using such expanded system functions and focus-
ing on the diagonal and nondiagonal elements of the
singular value matrix, reduction in image blurring and
artifacts could be achieved, resulting in improved image
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Figure 1: Observed signal detected via discrete FFP scans.

resolution. This was because the diagonal components
commonly indicated the similarities between each PSF
and an observed signal, whereas, the nondiagonal com-
ponents indicated the differences between both, with
high sensitivity. We had focused on these properties and
applied them to the field of pattern recognition [5]. Re-
cently, an applied research using a similar signal pro-
cessing technique was reported in the field of abnormal
waveform detection [6]. By using these concepts, it was
possible to reconstruct an MPI image with high image
resolution and high image-signal-to-noise ratio. How-
ever, because system functions with redundant informa-
tion were used, in both the conventional method and our
previously proposed reconstruction method, the image
reconstruction time could be considerably long, depend-
ing on the sizes of the image matrices.

Therefore, we attempted to examine how the number
of orthogonal bases used for image reconstruction could
be reduced without degrading the image quality. Re-
cently, specific basis transformations such as the Fourier
transform and the cosine transform, which can be used
to sparsify the MPI system matrix, were reported to be
highly effective for reducing the number of calibration
scans and reconstruction procedures [7–10]. In contrast,
in a previous work, we proposed a novel reconstruction
method to select an arbitrary orthogonal basis from the
system function comprising the set of all PSFs expanded
via SVD [11]. In this study, we extend the previous work
by performing numerical analyses to evaluate the quality
of the reconstructed image obtained using the proposed
methods. In particular, we propose a selection indicator
to select the appropriate orthogonal bases necessary for
reconstruction.

II. Materials and Methods

II.I. Scanning method for signal
acquisition

In this study, we assume that signals are acquired using
the classic field-free point (FFP) scanning procedure, to
evaluate the effects caused by the image reconstruction
method [12, 13]. That is, as shown in Figure 1, when
acquiring magnetization signals generated from MNPs as
induced electromotive forces (EMFs), the FFP is scanned

Figure 2: Definition of the general system function.

discretely for each matrix position (1, 2, . . . , 9 in Figure 1)
by adjusting the offset current (Ioffset) of a Maxwell coil.
The observed signal is defined as a series of EMF signals
detected over M time sampling points for each matrix
position, by superimposing an alternating magnetic field
on the FFPs. When compared to the 2D Lissajous scan,
such a 1D discrete scan requires more time to acquire
signal data; however, as mentioned above, we use a basic
scanning method whose scan parameters seem to have
little effect to examine the validity of the reconstruction
algorithm.

II.II. Formulation of the conventional
method

In the general forward problem, the observed signal ~o
from the particle arrangement ~p can be expressed as
in equation (1) [2]. According to the scanning method
shown in Figure 1, a delta response is obtained for each
point-like particle sample placed at an image matrix po-
sition. These functions have N ×M data points. Thus,
the system function S is defined as an (N ×M )×N matrix,
as shown in Figure 2, because it is a set of PSFs collected
for the point-like particle samples placed at each of the
N image matrix positions.

~o= S ~p (1)

The unknown particle arrangements ~p‘ can be esti-
mated by applying the inverse problem procedure:

~p′ = (S T S +λI )−1S T ~o=V (ΣTΣ+λI )−1V T S T ~o , (2)

where V is the right-singular vector of the SVD, V T is
the transpose of matrix V ,Σ contains the singular values,
ΣT is the transpose of matrix Σ, λ represents the normal-
ized parameters, and S T is the transpose of matrix S . An
advantage of this method is that blurs and artifacts are
unlikely to appear in the reconstructed image. However,
as the matrix size increases, the image reconstruction
time increases significantly. Therefore, in this study, we
propose an image reconstruction method based on a
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Figure 3: Definition of a PSF as a 2D array.

limited combination of PSFs instead of using a system
function composed of all PSFs collected at all image ma-
trix positions.

II.III. Concept of the proposed method
In general, SVD involves calculating the orthogonal ba-
sis that represents a target matrix most appropriately.
Therefore, the orthogonal basis obtained via SVD, for a
normal system function, is not universal for all matri-
ces and often includes redundant components. Thus, in
this paper, the system function is defined as a combina-
tion of several PSFs obtained from the MNPs arranged
at each matrix position of an image. Although each PSF
in Figure 2 can also be defined as a cascaded connection
of signals observed when applying an alternating mag-
netic field while altering the position of an FFP when an
MNP is arranged at the appropriate image matrix posi-
tion, each PSF can be rearranged as a 2D array, as shown
in Figure 3, for our formulation described below.

The procedure of the proposed method is described
below, in four steps, and a schematic diagram is shown
in Figure 4.

Step I

Each PSF is decomposed via SVD as

Si =UiΣi V T
i , (i = 1, 2, . . . , N ) , (3)

where Si is a 2D array of the rearranged 1D PSF de-
fined in Figure 3 at the i t h image matrix position, and N
is the total number of image matrix positions. Although
this 2D array size is arbitrary to satisfy the total data num-
ber (N ·M ) of the PSF, it is typically comprises N rows
and M columns. Ui is the left-singular vector, Σi is the
singular value matrix, Vi is the right-singular vector, and
V T

i is the transpose of matrix Vi .

Step II

The basis used for orthogonal expansion is reduced from
the left and right singular vectors. From the character-
istics of SVD, the low-order orthogonal bases obtained
from the left and right singular vectors contain several
signals from the original PSF. By expressing the signal of
the PSF with a low-order orthogonal basis, orthogonal
expansion can be performed with a minimal number of

Step I

Step II

Step III

Step IV

Figure 4: Procedure of the proposed method.

orthogonal bases. In particular, the orthogonal bases
obtained via SVD can represent the original observed
signal with fewer bases, than the case using bases such
as the cosine transform, because the target data can be
expanded very efficiently. Via this operation, Ui and Vi
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are replaced by the reduced singular vectors U ‘i and V ‘i ,
respectively. The criterion for determining the number
of orthogonal bases is described in the next section.

Step III

In this study, instead of using all N sets of orthogonal
bases, one to four sets of orthogonal bases are selected
and used for expanding the observed signals orthogo-
nally. An orthogonal expansion using four sets of or-
thogonal bases (U ‘p , V ‘p ,U ‘q , V ‘q ,U ‘r , V ‘r ,U ‘s , V ‘s ) is
shown below as an example. The characteristic concept
of our image reconstruction method is to newly expand
each system function Si with the orthogonal vectors U ‘ j

and V ‘ j , which are obtained by expanding other system
functions:

A j ,i =U T
j ′ Si V ′j ,

( j = p , q , r, s (1≤ p < q < r < s ≤N )), (i 6= j ) (4)

U ′T
j = (u j ;1 · · · u j ;α)

T , 1≤α≤N

(U ′T
j U ′

j = Iα) (5)

V ′Tj = (v j ;1 · · · v j ;α)
T , 1≤α≤M

(V ′Tj V ′j = Iα) . (6)

Here, A j ,i is the singular value matrix, j is the num-
ber of sets of orthogonal bases, U ‘T

j is the left inverse of

U ‘T
i , V ‘i is the right inverse of V ‘T

j , u j ;α is the αt h left-

singular vector, v j ;α is the αt h right-singular vector, α
denotes the selected column vector, and Iα is an identity
matrix. When the PSF 2D array Si is expanded using the
orthogonal bases U ‘ j and V ‘ j , the singular value matrix
Σi is reduced to only the diagonal elements, whereas, the
difference between Sj and Si is reflected in the singular
vector matrix A j ,i as diagonal and nondiagonal elements.
If the information of A j ,i is used efficiently, image recon-
struction may be possible using only a few orthogonal
bases. Furthermore, by using the same orthogonal bases
U ‘ j and V ‘ j , the observed signals O obtained from the
unknown MNP distributions can be expanded orthogo-
nally, and the singular value matrix B j can be calculated
as

B j =U ′T
j OV ′j . (7)

Step IV

When matrices A j ,i and B j obtained via orthogonal ex-
pansion are organized as column vectors aj,i and bj ((i =

Figure 5: Reduction of orthogonal bases.

1, 2, . . . , N ), ( j = p , q , r, s (1≤ p < q < r < s ≤N ))), respec-
tively, the following equation holds:







bp

bq

br

bs






=
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


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




~p , (8)

where ~pN×1 is the MNP arrangement. Similar to equa-
tion (2), an image is reconstructed by applying an in-
verse problem analysis to equation (8) to calculate the
unknown particle arrangement ~p‘.

II.IV. Reduction of orthogonal bases
In principle, if orthogonal expansion is performed using
all the left and right singular vectors obtained by SVD, the
original image can be reconstructed without error. How-
ever, because it is obvious that the amount of data will
be enormous, it is desirable to perform orthogonal ex-
pansions with the minimum number of singular vectors,
for image reconstruction. Thus, in this study, we inves-
tigated the criteria for selecting the reduced orthogonal
bases required for image reconstruction. According to
equations (5) and (6) shown in Step III described above,
the left and right singular vectors are reduced from the
high-order singular vectors, as shown in Figure 5, and
image reconstruction is performed using such minimal
data. Here, the following four conditions (a) to (d) are
used as thresholds for determining the order of the vec-
tors to be used, based on the singular values obtained
when SVD is applied to the central PSF (the percentages
listed indicate the rates of the orthogonal bases actually
used with respect to the numbers of orthogonal bases
when all the PSFs are used). The reason for using the
singular value for the central PSF as the threshold cri-
terion is that, approximating the original waveform of
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Figure 6: Analysis conditions and ideal MNP position.

the central PSF tends to require more vectors than ap-
proximating the original waveform of the PSF at other
positions.

(a) λα1 ≥ 1.0 ·10−4 (7.4 %) (9 right and left vectors)

(b) λα2 ≥ 1.0 ·10−5 (12.4 %) (15 right and left vectors)

(c) λα3 ≥ 1.0 ·10−7 (18.2 %) (22 right and left vectors)

(d) λα4 ≥ 1.0 ·10−8 (20.7 %) (25 right and left vectors)

II.V. Conditions of numerical analysis
To validate the effectiveness of the proposed method,
we performed numerical experiments. The field of view
(FOV) was set to 30 mm×30 mm with a matrix size of
11×11. A gradient magnetic field of 2.0 T m−1 was gen-
erated, and a sinusoidal alternating magnetic field of
20 mT was applied at a frequency of 122 Hz. MNPs with
a particle size of 20 nm assuming an MNP made of feru-
carbotran [13]were arranged as shown in Figure 6. The
observed signal was calculated assuming the Langevin
model, but the relaxation term was ignored because of
the low frequency of the alternating magnetic field used.
Additionally, the number of sampling points for the ob-
served signal generated from the MNPs was 128. All nu-
merical analyses were performed on a PC (Intel Core
i5-7200U with 2.50 GHz and 8 GB DDR3 RAM) using a C
language program, and the singular values were calcu-
lated using a general algorithm described in “Numerical
Recipes in C” [14]. To perform image reconstruction with
as few orthogonal bases as possible, in this study, the
number of left and right singular vectors was reduced;
and one to four sets of the orthogonal bases used for
orthogonal expansion were selected from 121 original
PSFs, as described in Step III. At this point, the orthogo-
nal bases used for image reconstruction were calculated
based on the PSFs selected from the following two re-
gions, which are shown in Figure 7:

Figure 7: Selection regions of orthogonal bases.

(i) From the orthogonal bases of one to four PSFs near
the center of the FOV.

(ii) From the orthogonal bases of one to four PSFs
around the edges of the FOV. In this case, two or
more orthogonal bases were not selected from the
same area, among the four areas in Figure 7 (ii).

We examined the effects of the number of singular
vectors and the sets of orthogonal bases on the recon-
structed images, using both a subjective evaluation of
the reconstructed images and an objective evaluation
based on the mean squared error (MSE) values of the re-
constructed images. In addition, a conventional inverse
problem image reconstruction method was also used for
comparison with these results. In both methods, image
reconstruction was performed using the regularization
parameter in inverse problem analysis, but no noise was
considered in the analyses.

III. Results
Table 1 shows the images reconstructed via the proposed
method and the MSE values for the singular value condi-
tions (a) to (d), under which image reconstruction was
clearly possible. The gray scale bar shows the normal-
ized image intensity. Table 2 shows the calculation time
required for each image reconstruction, under different
conditions. In the calculation times shown in the ta-
ble, the time shown for the conventional method corre-
sponds to the image reconstruction time, whereas, the
times shown for the proposed method correspond to the
sum of the image reconstruction time and the time re-
quired to orthogonally expand the observed signal with
the orthogonal basis.

The reconstructed images in Table 1 indicate that im-
age reconstruction is possible by setting the conditions
appropriately. Furthermore, from the results shown in
Table 1, it can be seen that the orders of the MSE values
are all smaller than 10−2. Although the image quality is
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Table 1: Results of reconstructed images.

Set of
orthogonal

bases

Selection
region of

orthogonal
bases

Singular value conditions
(a) (b) (c) (d)

≥ 1.0 ·10−4 ≥ 1.0 ·10−5 ≥ 1.0 ·10−7 ≥ 1.0 ·10−8

(9 vectors) (15 vectors) (22 vectors) (25 vectors)

One set
(i)

MSE: N/A MSE: N/A MSE: N/A MSE: N/A

(ii)
MSE: N/A MSE: N/A MSE: N/A MSE: N/A

Two sets
(i)

MSE: N/A MSE: 4.12 ·10−2 MSE: 3.36 ·10−2 MSE: 3.26 ·10−2

(ii)
MSE: N/A MSE: 3.06 ·10−2 MSE: 2.89 ·10−2 MSE: 2.55 ·10−2

Three sets
(i)

MSE: N/A MSE: 4.13 ·10−2 MSE: 3.62 ·10−2 MSE: 3.50 ·10−2

(ii)
MSE: N/A MSE: 2.87 ·10−2 MSE: 3.02 ·10−2 MSE: 2.64 ·10−2

Four sets
(i)

MSE: N/A MSE: 2.98 ·10−2 MSE: 3.02 ·10−2 MSE: 3.03 ·10−2

(ii)
MSE: N/A MSE: 2.66 ·10−2 MSE: 2.87 ·10−2 MSE: 2.54 ·10−2

Conventional inverse problem
image reconstruction method MSE: 1.44 ·10−2 Image intensity

slightly inferior to that obtained via the conventional in-
verse problem image reconstruction method, it can be
observed from Table 2 that the calculation time (i.e., the
sum of the image reconstruction time and the time to
orthogonally expand the observed signal with the orthog-
onal basis) is reduced significantly; it is approximately
50 times shorter at the most and 12 times shorter at the
least.

IV. Discussion

First, we consider the reconstructed image quality and
MSE values. Based on the results of the reconstructed
image and by comparing the two conditions in Table 1, it
can be seen that the image quality of the reconstructed

image improves when increasing the number of orthogo-
nal bases used for orthogonal expansion, as the threshold
of the singular value decreases. That is, increasing the set
of orthogonal bases improves the image quality and the
result asymptotically approaches the results obtained
using the conventional image reconstruction methods.

However, although the setting of the four threshold
values (α1-α4) in this study reduces the number of or-
thogonal bases used for image reconstruction to 9, 15,
22, and 25, respectively, and shortens the reconstruction
time correspondingly, the parameters should be selected
appropriately, considering the required image quality
and reconstruction time.

Moreover, to investigate which PSF’s orthogonal ba-
sis leads to an improvement in image quality, the con-
ditions near the center and edges are divided, and the
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Table 2: Calculation time required for imaging.

Sets of
orthogonal

bases

Selection
region of

orthogonal
bases

Singular value conditions
(b) (c) (d)

≥ 1.0 ·10−5 ≥ 1.0 ·10−7 ≥ 1.0 ·10−8

(15 vectors) (22 vectors) (25 vectors)
Calculation time [s]

Two sets
(i)

0.332 0.571 0.737
(ii)

Three sets
(i)

0.490 0.873 1.080
(ii)

Four sets
(i)

0.603 1.118 1.425
(ii)

Conventional inverse problem
image reconstruction method

17.122

Figure 8: Comparison of MSE values.

MSE values obtained from the reconstructed image are
compared, as shown in Figure 8. When comparing the
MSE values, it can be seen that the PSF’s orthogonal basis
is better near the edges than near the center. However,
when the number of orthogonal bases to be selected is
increased or when the threshold value is lowered, the
MSE values near the center and those near the edges
tend to be almost identical. From these facts, when per-
forming image reconstruction using a small number of
orthogonal bases, the orthogonal bases obtained from
PSFs near the edges are more important. However, as the
number of orthogonal bases increases, the reconstructed
images obtained using the center and edge orthogonal
bases exhibit little difference in quality.

Although we proposed a reconstruction method us-
ing orthogonal bases by applying SVD to PSFs, in this
paper, it has also been demonstrated that the system
function can be expressed approximately by Chebyshev
functions [15]. In fact, the orthogonal basis of each order
obtained by SVD is almost equivalent to the Chebyshev
basis in the frequency domain, under ideal conditions.
Although it is necessary to discuss the error due to the var-
ious factors (i.e., particle type, drive-field waveform, field
homogeneities and linearity, and so on) when we use
Chebyshev polynomials whose orthogonal basis form

is fixed for image reconstruction, the optimal orthogo-
nal basis may be obtained individually even if SVD is
applied to the signal data acquired under different con-
ditions. Therefore, the proposed method may not be
affected by the above error factors, and we will consider
it in the future. In addition, by clarifying the similarities
and differences between both orthogonal bases, it may
be possible to indicate not only the magnitude of singu-
lar values but also a more rational selection criterion for
the required orthogonal bases.

V. Conclusions
We proposed a new image reconstruction method using
the orthogonal bases obtained by applying SVD to the
PSFs. It was confirmed that image reconstruction was
possible using a small number of column vectors for the
right and left singular vectors. The results indicated that
the image reconstruction time could be shortened signif-
icantly while suppressing the image quality deterioration.
In a future work, we will clarify the number of orthogonal
bases suitable for image reconstruction and the regions
of the PSFs that should be selected. In addition, we do
believe that the effects of noise should be evaluated, to
demonstrate the practicality of this method.
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