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Abstract
This work explores how different parameters, e.g. magnetic anisotropy and core radius, influence the sig-
nal/spectrum of magnetic particles in a one-dimensional excitation field. Simulations are performed using a
model considering both the mechanical and magnetization dynamics of the particle. The performed simulations
show an increase of amplitude at higher harmonics for anisotropy constants within a certain range. This increase
is also observed for different magnetic radii. The obtained knowledge can help to improve the performance of
magnetic particles in magnetic particle imaging.

I. Introduction

The properties of magnetic particles have a great influ-
ence on different applications such as magnetic particle
imaging (MPI) [1] or magnetic particle hyperthermia [2].
Especially in the field of MPI the magnetic response of
the particles is often described using Langevin’s theory of
paramagnetism, where the magnetization only depends
on the ratio of magnetic to thermal energy. In reality,
many other properties of the nanoparticle and the sur-
roundings have to be taken into account [3–5]. To give an
example: the fact that magnetic particles usually exhibit
a magnetic anisotropy leads to a non-reversible behav-
ior (hysteresis). According to Langevin’s theory of para-
magnetism a bigger core diameter results in a steeper
magnetization curve (the modulus of the particle mag-
netic moment is given by |mp |=MS VC where VC is the
volume of the magnetic core and the saturation mag-
netization MS is assumed to be constant). However, in-
creasing the core diameter also increases the anisotropy
energy EA = K VC (assuming uniaxial anisotropy with
an anisotropy constant K ), which increases the coercive
field and remanent magnetization.

As such it is important to study the influence of parti-
cle parameters and their influence on the signal in the
context of MPI using a proper model to describe the mag-
netization dynamics and motion of the particle within
arbitrary fields. Therefore, models and solving methods
to describe the behavior of magnetic nanoparticles in
magnetic fields are required and have been introduced
by various previous works [3, 6–8].

In order to obtain more insight into the influence
of particle parameters on the magnetic particles sig-
nal/spectrum, the particle behavior in a 1D excitation
field has been simulated for different parameters. This
work will focus on the influence of different anisotropy
energies on the induced signal dm

dt and its corresponding
spectrum.

Additionally, it is studied how the core size and mag-
netic anisotropy affect the harmonics in interdepen-
dence. Finally, the scalability of the anisotropy energy is
viewed.
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II. Material and Methods

II.I. Simulation

The used simulation is introduced by A. Neumann et
al. [6]. It describes the dynamics of the particle mag-
netic moment as well as its mechanical (Brownian) ro-
tation, which are coupled via the magnetic anisotropy.
The calculations within the simulation are performed
in spherical/Euler coordinates to represent the state of
the particle. In order to consider both, Néel and Brown-
ian relaxation of the magnetic moment, coupled equa-
tions of motion are necessary. This coupling is achieved
by combining the Landau-Lifschitz-Gilbert equation [9]
with adapted Euler equations describing the rotational
dynamics within fluids [6, 9, 10]. Combining these equa-
tion leads to following angular velocities [6]
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where ~ωn ( ~ωm ) is the angular velocity of the particle
(magnetic moment), ~n ( ~m) is the orientation of the par-
ticle (magnetic moment), the gyromagnetic ratio γ, the
damping constant α, and the hydrodynamic (magnetic)
volume VH (VM ), respectively. The effective magnetic
field and torque are given by ~Heff =

1
MS VM

∂U
∂ ~m + ~Hnoise

and ~τeff =−δU
δφ + ~τnoise with the additional (white)-noise

terms 〈Hnoise,i (t )Hnoise, j (t ′)〉 = 2 kBT α
µ0 | ~m |γδi , jδ(t − t ′) and

〈Fnoise,i (t )Fnoise, j (t ′)〉= 12ηVH kBT δi , jδ(t − t ′) to include
thermal fluctuations.

Assuming that the magnetic particles are single-
domain particles and exhibit uniaxial anisotropy the
energy is given by U = − ~m · ~H + K VM (~e · ~n )2 (Stoner-
Wohlfarth-model [11]) where ~e = ~m/MS VM is the nor-
malized magnetic moment.

The corresponding Langevin equations in spherical
/Euler coordinates can be written as:

∂ ~Φn

∂ t
= E313

�

~Φn

�

· ~ωn (3)

∂ ~Φm

∂ t
= ESphere

�

~Φm

�

· ~ωm (4)

with projection matrices E313, ESphere and Euler an-
gles ~Φn = (φn ,θn ,ψn ) and spherical coordinates ~Φm =
(θm ,φm ). Equations (3) and (4) are coupled stochastic
differential equations which are solved using the Euler-
Maruyama scheme [12].

Figure 1: a) Plot of the normalized magnetic moment and
the associated excitation signal. An increasing anisotropy en-
ergy leads to a larger phase-difference; b) dm

dt for different
anisotropy constants. In addition to the phase difference, dif-
ferent anisotropy energies lead to different signal amplitudes.

Figure 2: Magnitude of the harmonics in the spectrum of dm
dt

for different anisotropy constants. The highest harmonics oc-
cur at K = 4 kJ/m3. The noise threshold depends on the num-
ber of simulated particles and periods.

II.II. Parameters

Within the simulations the particles saturation magne-
tization MS is set to 477 464 A/m, and an excitation field
strength of 20 mT with a frequency of 25 kHz is chosen.
The viscosity of water (1 mPa s) and room temperature
(295 K) are used.

This leads to a Brown relaxation time of τB ≈
0.4821µs and Néel relaxation times in the range of τn ≈
24.35 ns−0.42 s for a K in the range of 0 - 12 kJ/m2 based
on Equations (5) & (6) from [3].

The simulation time step is set to 5 ps whereby the
actual output is oversampled to a time step of 0.2 µs.
In all simulations the hydrodynamic diameter is set to
50 nm whereas in simulations, where only the anisotropy
has been varied, the magnetic core diameter is set to
24 nm. Each simulation has been performed over 6 peri-
ods (240 µs) of the excitation frequency with an ensemble
of 2000 particles. The run time is in the order of 20 min-
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Figure 3: Normalized harmonics (3, 13, 21, 33) for varying
magnetic radii and anisotropy constants.

utes using 4x Intel E5-4657L v2 CPUs. In the following
studies, the first period of the simulation is neglected to
avoid initialization artifacts, i.e. transient non-periodic
behavior, when the magnetic field is applied for the first
time, since the magnetic particles are initialized with a
random starting orientation and magnetization direc-
tion.

III. Results

III.I. Influence of different anisotropy
constants

Figure 1a) shows the normalized magnetic moment for
different anisotropy constants and the corresponding
normalized excitation signal.

The relationship between the time offset and the
anisotropy energy is easily recognized and caused by the
magnetic anisotropy which exerts an additional torque
on the particle’s magnetic moment which must be over-
come to reverse ~m with respect to the easy axis ~n . Thus,
a larger magnetic field ~H is necessary to reverse the mag-
netic moment in the direction of the applied field.

Figure 1b) shows the time derivative of the magnetic
moment. It is recognizable that the anisotropy does not
only affect the phase between the excitation signal and
the magnetic moment, but also influences the magni-
tude of dm

dt and therefore the switching behavior of the
particles magnetic moment with respect to the applied
field.

For a system-matrix based reconstruction it is impor-
tant that the measured spectrum contains many and high
harmonics [1]. To demonstrate how different anisotropy
constants influence the spectrum of the acquired signal
dm
dt , the magnitude of the harmonics is plotted in Fig-

ure 2.
It can be observed that the harmonics are larger for

certain magnetic anisotropy energies K VC . In the case of
the different anisotropy constants shown in Figure 2 and

Figure 4: Amplitude spectra for K = 1− 10 kJ with constant
anisotropic energy barrier K VM and magnetic moment MS VM .

the used other simulation parameters the highest har-
monics occur at an anisotropy constant of K = 4 kJ/m3.
Both, higher and lower anisotropy constants result in
lower harmonics. The case K = 0 is identical to the be-
havior obtainable from the Langevin function.

III.II. Interdependence of anisotropy
and magnetic radii

To visualize how harmonics are influenced by different
core sizes with different anisotropies, Figure 3 shows
a surface plot of different harmonics for different core
radii and anisotropy constants. The core radius is varied
from 5 nm to 25 nm in 2.5 nm steps. K is varied from 1
to 10 kJ/m3 in 1 kJ/m3 steps. Additionally, simulations
with 500 and 100 J/m3 are performed. The overall mag-
netic moments of the different core sizes are normalized
m̃ (t ) =m (t )/N MS VC , where N is the number of parti-
cles.

Additionally, the harmonics of every surface plot are
normalized to the largest occurring harmonic within the
surface. It can be observed that the optimal anisotropy
constant decreases with increasing core radius. Yet even
for very big core radii a small anisotropy (K ≤ 1000 J/m3)
leads to slightly higher harmonics, particularly at higher
frequencies, whereas the harmonics of particles with
large magnetic radii and high anisotropy decreases fast.
This fast decrease can be explained with an increased
Brownian rotation and the resulting friction losses, since
Brownian rotation is energetically favorable due to the
high anisotropy energy for bigger cores.

III.III. Simulations with constant
anisotropy energy barrier and
magnetic moment

Due to the fact that the anisotropy energy EA = K VM is
scalable with the magnetic core size/anisotropy constant
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it can be expected, that magnetic particles with identical
anisotropic energy and magnetic moment (MS VM ) show
equal behavior as long as both K VM & MS VM are kept
constant.

Figure 4 shows the amplitude spectra of particles with
varied anisotropy constants (1-10 kJ), constant magnetic
moment and anisotropy energy.

Where K VM = 3 ·10−20 J and MS VM = 1.44 ·10−17 Am2.
It is clearly visible that the amplitude spectra are identical
as explained above.

IV. Discussion
It has been shown how different anisotropy constants
with a fixed magnetic radius or varying magnetic radii
and therefore different anisotropy energies can influ-
ence the behavior of magnetic particles with a uniaxial
anisotropy in a 1D excitation field when Néel and Brow-
nian rotation are considered. At a specific anisotropy,
higher harmonics are observed which helps in MPI im-
age reconstruction. The effect of increased amplitudes in
higher harmonics caused by uniaxial anisotropies is stud-
ied in [4], where Brownian relaxation is not considered
and a parallel alignment of the easy axis and the mag-
netic field is assumed. The results in Figure 2 show that
an anisotropy caused increase of harmonic frequency
amplitudes can also be observed when Brownian relax-
ation/rotation is considered. Assuming that the switch-
ing behavior of the magnetic moment in a particle can
be approximated by the switching behavior of a 2-state
system (due to the uniaxial anisotropy) [4], it becomes
clear that the increase is particularly dependent on the
hydrodynamic radius of the particle and the viscosity of
the fluid. This is because the 2-state approximation is
only valid if the particle easy axis aligns roughly parallel
to the applied field. Therefore, increased amplitudes of
harmonic frequencies can only be expected if the par-
ticles easy axis’ are able to approximately align parallel
to the applied field and keep this alignment in average
and with respect to the excitation frequency. The particle
alignment particularly depends on the hydrodynamic
radius and the viscosity of the surrounding fluid.

It must be considered that the simulations have been
performed with a 1D sinusoidal excitation field. For other
frequencies or 2D/3D excitation the dynamics of a mag-
netic particle and its magnetic moment are different and
thus other values of particle properties will be advan-
tageous or disadvantageous. Nevertheless, it is shown
that well-chosen particle parameters will improve MPI
performance.

V. Conclusions
Using a varying anisotropy constant and in the second
case additionally varying magnetic radii, it is exemplified

how particle properties influence the signal harmonics
relevant for MPI. Additionally, it is shown that the scala-
bility of the anisotropy energy leads to the expected equal
behavior. Several simulations can be done to gain knowl-
edge how properties like excitation frequency, multi-
dimensional excitation, hydrodynamic radius, viscos-
ity, particle distribution or as described, the magnetic
anisotropy change the acquired signal. This knowledge
helps to synthesize performing magnetic particles for
application in MPI or magnetic particle hyperthermia.
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