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Abstract
Magnetic particle imaging (MPI) is an imaging modality exploiting the nonlinear magnetization behavior of (super-)
paramagnetic nanoparticles to obtain a space- and often also time-dependent concentration of a tracer consisting of
these nanoparticles. MPI has a continuously increasing number of potential medical applications. One prerequisite
for successful performance in these applications is a proper solution to the image reconstruction problem. More
classical methods from inverse problems theory, as well as novel approaches from the field of machine learning,
have the potential to deliver high-quality reconstructions in MPI. We investigate a novel reconstruction approach
based on a deep image prior, which builds on representing the solution by a deep neural network. Novel approaches,
as well as variational and iterative regularization techniques, are compared quantitatively in terms of peak signal-
to-noise ratios and structural similarity indices on the publicly available Open MPI dataset.

I. Introduction

The imaging modality magnetic particle imaging (MPI)
was invented by Gleich and Weizenecker in 2005 [1]. The
goal of the technique is to reconstruct a concentration
of (super-)paramagnetic iron oxide nanoparticles by ap-
plying a dynamic magnetic field. MPI benefits from high
temporal resolution and potentially high spatial resolu-
tion which make it suitable for several in-vivo applica-
tions like imaging blood flow [2], long-term monitoring
by utilizing a circulating tracer [3], flow estimation [4],
tracking/guiding medical instruments [5], cancer detec-
tion [6], and cancer treatment by hyperthermia [7]. More-
over, the list of potential medical applications exploiting
MPI is still growing, e.g., the recent prototype develop-

ment of a human-sized scanner suitable for scanning a
human’s head [8] illustrates the potential of MPI for cere-
bral applications like stroke detection and monitoring [9].
For further technical background information on MPI,
we refer to [10–12].

A critical prerequisite for potential medical applica-
tions is a proper solution to the image reconstruction
problem in MPI, which aims for the determination of the
space- and in some instances time-dependent tracer con-
centration. Neglecting concentration-dependent effects
[13], likely to be caused by particle-particle interactions,
the reconstruction is a linear ill-posed inverse problem
[14], which for a given system matrix is typically solved by
applying Tikhonov regularization in combination with
the algebraic reconstruction technique and a nonneg-
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ativity constraint [2, 15]. An alternative reconstruction
approach for MPI is a direct inversion method exploit-
ing Cartesian excitation patterns, the so-called x-space
reconstruction [16, 17]. More generally, classical recon-
struction methods from inverse problems theory taking
into account further prior information, e.g., fused lasso
regularization and directional total variation, have been
applied to experimental [18] and simulated data [19].
More sophisticated approaches explicitly taking into ac-
count operator uncertainty have been proposed by using
a total-least-squares approach combined with standard
Tikhonov regularization as well as a sparsity-promoting
penalty term [20]. Further efforts to improve the recon-
struction in terms of accuracy and efficiency have been
made, e.g., low-rank approximations and whitening [21]
motivated by the non-polynomial decay of singular val-
ues [14], problem reduction via postprocessing [22], in-
troducing an `1-data fidelity term [23], and many more
(see [11] for an extensive overview).

Solving inverse problems by using techniques from
the field of machine learning has received increased in-
terest during the last years, and the number of their
successful applications is continuously increasing [24].
One specific class of methods, based on the training of
deep neural network architectures, is often summarized
by the term deep learning-based methods. Specific ex-
amples for such image reconstruction methods include
fully learned approaches [25, 26], unrolled iterative algo-
rithms [27, 28], learned penalty terms [29], or postpro-
cessing of classical reconstructions [30–32]. All of these
methods have in common that they rely on training data.
Often this training data is required in the form of tuples
consisting of a given ground truth reconstruction and
a corresponding measurement. In general, and also for
MPI, this reliance on data leads to a chicken-and-egg
type problem, since one relies on the assumption that
sufficient ground truth data is available. In contrast, a
deep image prior (DIP) approach [33] exploiting gener-
ative neural networks has been proposed recently for
solving inverse problems in general. The DIP [34] is a
novel regularization technique based on untrained neu-
ral network architectures. The basic idea is to use a neural
network architecture/setting, that implicitly encodes a
prior which encourages plausible reconstructions and
relies on one single measurement only.

In the context of reconstruction methods for MPI, the
investigation in the present paper is twofold, i.e.,

1. we introduce a three-dimensional deep image prior
(DIP) for MPI, and

2. we compare various numerical reconstruction
methods quantitatively as well as qualitatively in
the context of the Open MPI dataset [35].

The subsequent part of the paper is structured as follows:
In Section II, we provide a description of the used sys-
tem matrix approach in MPI, variational reconstruction

methods, a description of DIP, the experimental data set,
and a brief description of the compared methods. In
Section III, we continue with numerical results, includ-
ing a quantitative comparison between DIP and classical
methods, including variational and iterative approaches
to image reconstruction. We conclude with a discussion
in Section IV.

II. Methods

II.I. Magnetic particle imaging and
preprocessing chain for derivation
of the linear system of equations

In the following, we sketch the system matrix approach
commonly used in MPI, see also [11] for further reading.
We begin with some basic notation. Let Ω ⊂ R3 be a
bounded domain. Further, let T > 0 denote the maximal
data acquisition time and I := (0, T ) the time interval
during which the measurement process takes place.

The measured voltage signals v` : I →R, `= 1, . . . , L ,
obtained at L ∈N receive coil units, is given by a superpo-
sition of a signal vP,` caused by the particles and the direct
feedthrough v0,` (background signal) caused mainly by
the applied magnetic field. The inverse problem is thus
to find the concentration c :Ω→R+ ∪{0} from {v`}L`=1:

v`(t ) =

∫

Ω

c (x )s`(x , t )dx + v0,`(t ) = S`c (t )+ v0,`(t ), (II.1)

where S` : L 2(Ω) → L 2(I ) is the forward operator and
where s` ∈ L 2(Ω× I ) is the background-corrected system
function.

The calibration procedure obtains single measure-
ments from a small "delta" sample at predefined posi-
tions {x (i )}i=1,...,N ∈ ΩN which builds the basis for the
commonly used system matrix approach. For this pur-
pose let Γ ⊂R3 be a reference volume placed at the origin.
The concentration phantoms are given by c (i ) = c0χx (i )+Γ
for some reference concentration c0 > 0. Typical choices
for Γ are small cubes. If {x (i )+Γ }i=1,...,N form a partition of
the domain Ω, the background-corrected measurements
v (i )` −v (i )0,` = S`c

(i ), i = 1, . . . , N , can then be used directly to
characterize the system matrix S for L receive coil units
(v (i )0,`, `= 1, . . . , L , are background measurements used for
system matrix correction). For given phantom measure-
ments v`, `= 1, . . . , L , we build the measurement vector
v analogously. Both are then given by

S =
1

c0

















Re((〈v (i )1 − v (i )0,1,ψ j 〉) j∈J1,i=1,...,N )
Im((〈v (i )1 − v (i )0,1,ψ j 〉) j∈J1,i=1,...,N )

...

Re((〈v (i )L − v (i )0,L ,ψ j 〉) j∈JL ,i=1,...,N )
Im((〈v (i )L − v (i )0,L ,ψ j 〉) j∈JL ,i=1,...,N )

















∈RM×N ,

(II.2)
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v =















Re((〈v1,ψ j 〉) j∈J1
)

Im((〈v1,ψ j 〉) j∈J1
)

...
Re((〈vL ,ψ j 〉) j∈JL

)
Im((〈vL ,ψ j 〉) j∈JL

)















∈RM , (II.3)

where {ψ j } j∈Z is the Fourier basis of time-periodic sig-
nals of L 2(I ), i.e.,ψ j (t ) = 1/

p
T (−1) j e i 2π j t /T , j ∈Z. For

the purpose of preprocessing prior to reconstruction
the sets J` ⊂ Z, ` = 1, . . . , L are restrictions to certain
frequency indices, which also yield M = 2

∑L
` |J`|. Two

frequency-selection approaches which are commonly
combined result in the index sets J`, `= 1, . . . , L : a band-
pass approach and SNR-type thresholding with threshold
τ≥ 0 (see [21, Sec. 2.2] for a more detailed description).

Let v0 be the analogous measurement vector of the
direct feedthrough, i.e., of an empty scanner. Then one
obtains a measured signal from the L receive coils by
v δ = v + v0+ηwith noise vector η, ‖η‖ ≤δ.

We thus obtain a linear system of equations S c =
v δ − v0. Also, we include two processing steps, whiten-
ing, and low-rank approximation, which have been suc-
cessfully used to improve reconstruction quality and
computation times in MPI [21]. The linear equation sys-
tem is multiplied with a whitening matrix W obtained
from the diagonal covariance matrix of multiple back-
ground measurements. This allows to take into account
the varying noise characteristic in the frequencies. For
the low-rank approximation step, let (ŨK , Σ̃K , ṼK ) be the
randomized singular value decomposition (rSVD) for the
K ≤min(M , N ) largest singular values of the matrix W S .
The main purpose of this step is dimension reduction
instead of introducing an additional regularization in the
problem setup. The severe ill-posedness of the imaging
problem [14] and earlier investigations of the singular
value energy ratio [21, Fig. 6] on the dataset used in the
present work predict a reasonable dimension reduction
without significant influence of truncation of the singular
values.

Finally, this leaves us with the linear system

Ac = y δ (II.4)

with the processed matrix A = Ũ t
K W S ∈RK ×N and mea-

surements y δ = Ũ t
K W (v − v0) ∈RK (·t denotes the trans-

pose matrix).
In summary, we apply the following preprocessing

steps to derive the final system of equations in (II.4) for
a given SNR threshold τ (note that this is the only pa-
rameter in the preprocessing chain which is varied in the
subsequent results section):

1. frequency selection by bandpass filtering and SNR-
type thresholding, which removes too noisy rows in
the system matrix,

2. concatenation of multiple receive coil units and
splitting real and imaginary part,

3. weighting by diagonal whitening matrix, which
takes into account varying standard deviations
across the rows of the system matrix, and

4. system reduction by projection on subspace cor-
responding to K largest singular values of the
whitened system matrix.

Note that steps 3 and 4 are motivated by improved recon-
struction performance reported in the literature [21] but
they are less standard in common MPI reconstruction
approaches.

II.II. Classical reconstruction methods

Before describing the DIP method in the next subsection,
we give a brief description of "classical reconstruction
methods" to address the MPI problem which is given by
an ill-posed operator equation ("classical" is to be under-
stood in contrast to emerging reconstruction methods
from the field of machine/deep learning).

Given some suitable spaces X and Y commonly as-
sumed to be general Banach or Hilbert spaces, the re-
construction task is to compute a concentration c ∈ X
that agrees with a noisy measurement y δ ∈ Y obtained
by the linear measurement operator A : X → Y , i.e., we
want to find a “plausible” c such that

Ac ≈ y δ. (II.5)

In line with the MPI setup specified in Section II.I, we
consider the Hilbert spaces X =RN and Y =RK in the
present paper.

For many inverse problems and also in MPI one fol-
lows a variational approach by minimizing a Tikhonov-
type functional, i.e., a superposition of data fidelity and
additive penalty term, which for the finite-dimensional
system in the present work is given by

Jλ(c ) =
1

p
‖Ac − y δ‖p

p +λR (c ), (II.6)

where the regularization parameter λ ≥ 0 and penalty
term R :RN →R+ include prior knowledge on the solu-
tion to obtain a stable reconstruction from noisy mea-
surements. Common values for p are 1 and 2. Well-
studied choices for R are, for example, 1

2‖ · ‖2
2, ‖ · ‖1, and

total-variation terms TV [36]. The functionals are then
minimized using suitable optimization techniques like,
projected gradient descent type methods or incremen-
tal gradient descent method – which also include the
Kaczmarz-type methods [37, 38] preferably used in MPI.
In the latter case, one needs to be aware of the iterative
nature of the algorithms, which can introduce an addi-
tional kind of regularization if a small iteration number
is chosen not being sufficient for reaching convergence
(early stopping).
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II.III. Deep image prior
We now discuss the idea behind the deep image prior
(DIP). The concept of a DIP was first introduced in [34],
and it has been quickly adopted by fields like compressed
sensing [39] and inverse problems [33]. Compared to
classical reconstruction techniques, the DIP approach
has shown improved reconstruction quality in image de-
noising [34], computed tomography [40], and positron
emission tomography [41]. The core idea is to use the ar-
chitecture of an untrained neural network ϕθ :RZ →RN

as a regularization for the reconstruction and to deter-
mine the network parameters θ ∈RQ for a random but
fixed input z ∈ RZ . More formally, in DIP one tries to
minimize the data fidelity

JDIP (θ ) = ‖Aϕθ (z )− y δ‖p
p , (II.7)

with respect to θ , where usually p = 2, but throughout
this paper we will use p = 1. The minimization is done
iteratively by Adam [42]. This is in contrast to common
approaches relying on the minimization of a Tikhonov-
type functional as given in (II.6). One crucial prerequisite
for the DIP is the proper choice of network architecture
and often an adequate criterion for early stopping of the
optimization. While the original DIP uses an architecture
for 2D images, we use an architecture suitable for the 3D
MPI problem.

As our regularizing architecture, we use an autoen-
coder. It is based on the original DIP paper’s “skip-
architecture”[34] and has approximately 3 million pa-
rameters. This means the network, like other DIPs, is
highly overparameterized. This overparameterization
seems necessary for tasks where a large amount of infor-
mation is missing – as the paper [43] demonstrates for
inpainting tasks. In detail, our architecture differs in the
following aspects from the “skip-architecture”:

• Like [40], in a two-dimensional setting, we find that
removing the skip-connections leads to improved
reconstructions. Therefore we use the architecture
without the skip-connections, i.e., we reduce it to
an autoencoder.

• Naturally, we replaced the two-dimensional convo-
lutional layers by three-dimensional ones.

• Our final activation function is ReLU, not Sigmoid.
We use ReLU because we know that our particle con-
centration is non-negative, but do not know an up-
per bound.

We depict the architecture in Figure 6 of the Appendix.
We conclude this subsection with a discussion of the

relationship between the DIP and the variational ap-
proach, i.e., rewriting variational regularizations as deep
image priors: As demonstrated in [33], the DIP can be
related to variational approaches to inverse problems.
For these theoretical considerations we have to assume
optimization up to convergence (no early stopping) and

continuous differentiability of the network with respect
to its parameters θ . Then one can apply the idea of La-
grange multipliers [44] to the constrained optimization
problem

min
c
‖Ac − y δ‖2

2 s.t. ‖c −ϕθ (z )‖2
2 = 0. (II.8)

We would like to point out that it is also possible to write
most of the common regularization functionals R in the
context of the variational problem

min
c
‖Ac − y δ‖2

2+λR (c ) (II.9)

as a DIP – although this can require exotic architectures.
One way to show this is to assume continuous differentia-
bility of R and utilize Lagrange multipliers to rewrite the
Expression (II.9) as the constrained optimization prob-
lem

min
c
‖Ac − y δ‖2

2 s.t. R (c ) = γ(λ). (II.10)

If we further assume the existence of an R specific func-
tional gγ : domain(R ) =RQ =RN →R s.t. R (gγ(θ )θ ) = γ,
we can rewrite (II.10) in terms of the problem

min
θ
‖Agγ(θ )θ − y δ‖2

2. (II.11)

The solution θ of this problem yields the solution to
the original problem in (II.9) via gγ(θ )θ . The assump-
tion that such an gγ exists is fulfilled by most common
penalty terms in use, like total-variation [36], and `p -
norms which fulfil this property in the form of positive
homogeneity. E.g., for a penalty term of the form

R (c ) = ‖c ‖p
p ,

and c 6= 0, we have the functional gγ(c ) =
ppγ
‖c ‖p

and there-

fore the DIP

ϕθ (z ) =
p
p
γ

‖θ ‖p
θ . (II.12)

II.IV. Experimental data and image
quality assessment

For the experimental evaluation we use the 3D open
MPI dataset [35] (downloaded from https://www.
tuhh.de/ibi/research/open-mpi-data.html,
last accessed on April 02, 2020) provided in the MPI
Data Format (MDF) [45]. The system matrix is measured
using a cuboid sample of size 2 mm × 2 mm × 1
mm and a 3D Lissajous-type FFP excitation while
obtaining averaged empty scanner measurements
every 19 calibration scans. The calibration is carried
out with a Perimag tracer having a concentration of
100 mmol/l. The field-of-view has a size of 38 mm
× 38 mm × 19 mm, and the sample positions have a
distance of 2 mm in x - and y -direction and 1 mm in
z -direction, resulting in 19×19×19= 6859=N voxels.
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Measurements are averaged over 1000 repetitions, and
with each phantom, an empty measurement with 1000
repetitions is provided. By taking the mean of the empty
measurements provided with the phantom, we obtain
v0,`, ` = 1, . . . , L , respectively v0, in Section II.I. For the
background removal in the system matrix we used
v (i )0,` = v0,` for any i = 1, . . . , N and, if not mentioned
differently, use K = 2000 for the low-rank approximation
step discussed in Section II.I.

We use the “shape” and “resolution” phantoms pro-
vided in the dataset. We state the detailed descrip-
tion for the sake of completeness. It can also be
found on at https://www.tuhh.de/ibi/research/
open-mpi-data.html or in [23]. The “shape” phan-
tom is a cone defined by a 1 mm radius tip, an apex
angle of 10 degrees, and a height of 22 mm. The total
volume is 683.9 µl. Perimag tracer with a concentration
of 50 mmol/l is used. See [23, Figure 3] for a schematic
illustration, where the plots are adapted from the Open
MPI dataset. The “resolution” phantom consists of
5 tubes filled with Perimag tracer with a concentration
of 50 mmol/l. The 5 tubes have a common origin on
one side of the phantom, and extend in different angles
from the origin within the x -y - and y -z -planes. In the z -
direction, the angles in the y -z -plane are chosen smaller
(10 deg and 15 deg) than in x -y -plane (20 deg and 30
deg); see [23, Figure 4] for the illustration.

For image quality assessment, we exploit the ap-
proach in [23], where the authors extracted voxel images
from the CAD drawings and included position uncer-
tainty in peak-signal-to-noise-ratio (PSNR) and struc-
tural similarity measure (SSIM) [46]. More precisely, a
reference image c0 :R3→R+ is used in combination with
shifts∆r ∈R , whereR is the set of all possible position
shifts in the neighborhood [−3mm,3mm]3 with a step
size 0.5mm in each direction (|R|= 2197). Then the L 2-
scalar products of c0(r +∆r ) and the piecewise constant
basis functions {ψ j } j with respect to the voxel grid yields
the reference image xref,∆r ∈RN . Following the approach
in [23]we define the following conservative image quality
measures

εPSNR(x ) = max
∆r∈R

PSNR(x , xref,∆r ) (II.13)

εSSIM(x ) = max
∆r∈R

SSIM(x , xref,∆r ) (II.14)

which are used for quantitative comparison in the fol-
lowing. Here, we use a data range of 100 for the SSIM
computations.

II.V. Reconstruction methods used for
comparison

In the subsequent quantitative and qualitative compari-
son, we distinguish three classes of reconstruction meth-
ods, which we evaluate on the two phantoms of the 3D
Open MPI dataset described in Section II.IV:

1. DIP: Reconstructions based on the DIP approach
minimizing a data fidelity term as described in Sec-
tion II.III using Adam with varying numbers of iter-
ations.

2. VAR: Reconstructions based on the minimization
of a Tikhonov-type functional consisting of a data-
fidelity and a penalty term as outlined in Section
II.II. Minimization is performed by AMSGrad [47]
until convergence is reached such that results rely
on the variational regularization only.

3. KACZ: Analogous to VAR, but the minimization re-
alized by a Kaczmarz-type algorithm with varying
numbers of iterations. Effectively it yields recon-
structions, which are results of a hybrid regulariza-
tion, mixing iterative and variational elements.

We encode our methods based on the class, the respec-
tive data fidelity, and the penalty terms, i.e., Method
class D data fidelity + P penalty. All meth-
ods rely on a certain number of parameters controlling
the degree of regularization. We performed a discrete
optimization with respect to these parameters to obtain
optimal results in terms of PSNR and SSIM. We thus com-
pare the best possible performance of the different meth-
ods. From an application point of view, without knowl-
edge about ground truth an appropriate regularization
parameter choice rule is required, which is an important
and related direction of research but beyond the scope of
this article. The methods of interest in this comparison
are specified in more detail in the following list:

• DIP D`1 +P-: We minimize the functional (II.7) with
p = 1 only as it led to superior reconstruction per-
formance when compared to the case p = 2.

– Our fixed random input to the network, z , has
entries coming from the uniform distribution
between 0 and 0.7 and has, like the output, the
shape (1,19,19,19) where 1 is the number of
channels and 19 is the edge length of the con-
centration cube we aim to reconstruct.

– The encoder steps down-sample by a factor of
2 and have 64, 128 and 256 channels respec-
tively. The decoder is symmetric to this.

– We minimize the functional for up to 20000
iterations with Adam [42] and for the different
learning rates αi = 10−i , for i = 3,4,5, and the
standard momenta settings β = (0.9, 0.999).

For the purpose of parameter optimization (with
regard to image quality of the reconstruction) we
extracted reconstructions after iterations s ∈ IDIP :=
{1, 2, . . ., 10, 12, . . ., 30, 35, . . ., 50, 60, . . ., 150, 175, . . .,
500, 600, . . ., 2000, 2500, . . ., 5000, 6000, . . ., 20000}
to exploit early stopping.

• KACZ D`2 + P`2: This is one of the commonly
used techniques in MPI which minimizes the func-
tional 1

2‖Ac − y δ‖2
2 + ρ

1
2‖c ‖2

2 with non-negativity
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constraints by a row action method for inconsis-
tent systems of equations [48] (see [38, Sec. 4] or
[21, Alg. 1] for the detailed algorithm). For the pa-
rameter optimization ρ ∈ {0.5i−1|i = 1, · · ·40}=:P
were used. Like all the following KACZ reconstruc-
tions, we consider all reconstructions after the same
sweeps/iterations s as for the DIP up to a maximum
of 500 sweeps (i.e., going 500 times over all rows in
the system matrix) to choose the best reconstruc-
tion with respect to image quality, i.e., s ∈ IKACZ :=
IDIP ∩{1, 2, . . . , 500}.

• KACZ D`2 + P(`1+`2): This is an extension of the
previous algorithm for inconsistent systems of equa-
tions taking into account an additional sparsity-
promoting `1-penalty term when minimizing the
functional ‖Ac − y δ‖2

2 +ρ
1
2‖c ‖2

2 +λ‖c ‖1 with non-
negativity constraints. We exploit a splitting method
[49, Sec. 9.4.1] first applying one sweep over the ma-
trix as in the previous method followed by applying a
soft shrinkage operator before starting a new sweep
over the matrix. A similar approach applying the
soft shrinkage operator in each row action can be
found in [50] for consistent systems and an explicit
description can be found in [51, Alg.1]. Both regu-
larization parameters are taken from P as above
(i.e., resulting in 402 time |IKACZ | parameter combi-
nations).

• KACZ D`2 + P`1: We consider the previous func-
tional for ρ = 0, i.e., 1

2‖Ac − y δ‖2
2+λi ‖c ‖1 with non-

negativity constraints via the previous algorithm
(see also [52, Alg. 2] for an example implementation).
We ran reconstructions for all parameter choices
λ ∈P times the number of iteration numbers con-
tained in IKACZ .

• KACZ+TSVD D`2 + P`1: The normalization step in
Kaczmarz divides by the sum of the current row’s
squared `2-norm and ρ. When using ρ = 0 – like in
the previous method – and rows with small norms
exist, this leads to instabilities. Therefore, in the
presence of low norm rows, it makes sense to re-
move them when one applies Kaczmarz with no `2-
regularization. Due to the low-rank approximation
in preprocessing and the problem’s ill-posedness,
the matrix contains rows close to zero. We thus also
used only the 32, 64, 128, 256, 512, and 1024 rows
with the largest norms in the previous method (and
corresponding entries of the measurement). I.e., we
set K in Section II.I to these values, which is equiv-
alent to a truncated SVD (TSVD). Reconstructions
for (λ, s ) ∈P × IKACZ are computed.

• VAR: Here, we minimize a functional of the form II.6,
where we chose the penalty parameter as above and
the penalty function as `1, `2 and TV. In the results
section the parameter λ belongs to `1, ρ to `2, and
µ to TV. We also compare p = 1 and p = 2. Mini-

mization of the functional is performed up to con-
vergence by applying AMSGrad [47]with a learning
rate of 10−2 and again β = (0.9, 0.999) (pyTorch [53]
standard settings) for 500 iterations, after each iter-
ation we project c to be non-negative.

All methods are implemented in python [54]mainly
using the packages numpy [55] and pyTorch [53].

III. Results
First, we compare the results quantitatively based on the
optimal PSNR and SSIM values, which are presented in
Tables 1 and 2, for the shape and resolution phantom,
respectively. The corresponding optimal parameters that
led to these values can be found in the supplementary
material in Tables 5 and 6. Note that all the data dis-
cussed in this section relates to the whitened case dis-
cussed in the preprocessing part of Section II.I. The sup-
plementary material contains the analogous parts of the
non-whitened case, which qualitatively leads to similar
results, though, with PSNRs being on average 0.5 lower
and SSIMs being on average 0.12 lower for peak values.

Qualitatively we present the results in Figures 1, 2,
and 3. Figure 1 utilizes a three-dimensional visualiza-
tion to compare the best PSNR reconstruction with the
ground truth phantom for the shape and resolution
phantom respectively. Both best reconstructions were
achieved by our DIP approach. We display the loss,
PSNRs, and SSIMs over time of these two reconstruc-
tions in the Figures 7 and 8 of the Appendix. Figures 2
and 3 display two-dimensional cross sections of the re-
constructions corresponding to the values of Tables 1
and 2 – except for VAR D`2 since these methods result in
the worst reconstructions. The main observations are as
follows:

1. The proposed DIP approach achieves the overall
highest PSNR and SSIM values for both the shape
and the resolution phantom. Even for SNR-type
threshold settings (τ’s/columns), in which the DIP
produces inferior peak results, they are usually com-
parable to the best method. We found that for the
DIP, the PSNR rapidly rose within the first 50-100 iter-
ations. It always reached 95% of the run’s top PSNR
within the first 150-1500 iterations, usually even over
98%. On a GeForce GTX 1080 Ti, this equates to 3.2-
32 seconds for τ = 3. For the shape phantom, the
top PSNR was typically achieved after the first few
hundred iterations, after which the PSNR began to
drop significantly. For the resolution phantom, we
also saw a rapid early rise in PSNR, which turned
into a prolonged slow increase over several thou-
sand iterations. An equally slow decline followed
this slow increase. Consequently, the peak PSNR
for the resolution phantom occurred typically quite
late.
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Methods PSNRs SSIMs
τ= 0 τ= 1 τ= 3 τ= 5 τ= 0 τ= 1 τ= 3 τ= 5

DIP D`1 + P- 28.70 29.36 29.81 29.94 0.968 0.968 0.973 0.973
KACZ D`2 + P`2 29.12 29.31 28.89 28.79 0.957 0.958 0.955 0.953
KACZ D`2 + P`1 26.21 26.63 18.01 17.09 0.886 0.888 0.534 0.534
KACZ+TSVD D`2 + P`1 28.84 29.62 28.76 28.53 0.953 0.953 0.953 0.947
KACZ D`2 + P(`1+`2) 29.52 29.70 29.43 29.15 0.963 0.964 0.961 0.958
VAR D`1 + P`1 21.45 21.58 21.45 22.64 0.856 0.865 0.840 0.876
VAR D`1 + P`2 27.57 27.89 27.50 27.81 0.932 0.910 0.876 0.885
VAR D`1 + P TV 25.98 25.84 26.29 27.31 0.932 0.917 0.930 0.938
VAR D`2 + P`1 17.70 21.28 23.03 24.06 0.646 0.807 0.882 0.897
VAR D`2 + P`2 20.14 24.53 26.11 26.33 0.684 0.854 0.913 0.906
VAR D`2 + P TV 18.96 22.78 25.75 25.58 0.648 0.818 0.915 0.914

Table 1: PSNR and SSIM values as achieved by the different SNR-type thresholds τ settings for the shape phantom. Largest
values for each column are in bold font. The overall largest value is underlined. The corresponding parameter choices including
the iteration number s for DIP and KACZ can be found in Table 5.

Methods PSNRs SSIMs
τ= 0 τ= 1 τ= 3 τ= 5 τ= 0 τ= 1 τ= 3 τ= 5

DIP D`1 + P- 31.73 32.46 32.92 32.33 0.945 0.952 0.951 0.940
KACZ D`2 + P`2 31.58 32.08 31.89 31.71 0.946 0.947 0.949 0.945
KACZ D`2 + P`1 31.82 32.08 30.24 29.39 0.943 0.944 0.887 0.829
KACZ+TSVD D`2 + P`1 31.94 32.57 31.80 31.35 0.947 0.948 0.947 0.942
KACZ D`2 + P(`1+`2) 31.82 32.38 32.10 31.76 0.949 0.949 0.949 0.946
VAR D`1 + P`1 30.43 30.82 29.91 30.25 0.915 0.919 0.901 0.904
VAR D`1 + P`2 31.42 31.59 31.42 31.14 0.945 0.947 0.942 0.936
VAR D`1 + P TV 31.22 31.61 31.47 31.24 0.940 0.948 0.933 0.928
VAR D`2 + P`1 29.00 28.93 30.08 30.93 0.803 0.860 0.910 0.905
VAR D`2 + P`2 29.51 30.23 30.88 31.24 0.839 0.889 0.932 0.931
VAR D`2 + P TV 29.26 29.54 30.44 30.79 0.823 0.878 0.925 0.925

Table 2: PSNR and SSIM values as achieved by the different SNR-type thresholds τ settings for the resolution phantom. Largest
values for each column are in bold font. The overall largest value is underlined. The corresponding parameter choices including
the iteration number s for DIP and KACZ can be found in Table 6.

2. Quantitatively, the VAR D`1 reconstructions are su-
perior to the VAR D`2 reconstructions as the Ta-
bles 1, and 2 show. Although in the present work,
we project the data as well as the noise onto the
subspace spanned by the singular functions corre-
sponding to the largest singular values, this finding
is in line with the observation in [23]. On a GeForce
GTX 1080 Ti, one run of such a VAR method took
about 1.6 seconds for τ= 3.

3. Within the KACZ methods, we can observe that the
combination of `2- and `1-term is superior to the
standard KACZ method solely using the `2-term.

4. The KACZ methods, which utilize early-stopping
(see s -values in Tables 5 and 6), produce better re-
sults than the purely variational methods (VAR). On
a Xeon E5-2687W v4, one sweep of such a KACZ
method took approximately 0.3 seconds for τ =
3, opposed to around 0.6 seconds on a GeForce

GTX 1080 Ti. The best reconstructions required 1-7
sweeps. You can find the exact number of sweeps
for the different reconstructions in the Appendix’s
parameter tables.

5. The KACZ D`2 +P`1 method can suffer from instabil-
ity issues if it has to deal with matrix rows of small
norm. However, further reducing the rank using
TSVD (method KACZ+TSVD D`2 + P`1) has a ben-
eficial influence on the reconstruction quality, but
in almost all cases, it cannot reach the performance
of KACZ D`2 + P(`1+ `2)which is an alternative ap-
proach to stabilize the reconstruction.

6. Particularly for the resolution phantom, we can ob-
serve that in almost all cases, larger SNR-type thresh-
olds result in worse reconstructions, which is not a
surprise as SNR-thresholding is known to remove
phantom information if the threshold is chosen too
large [21, 22].
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phantom reconstruction

Shape

Resolution

Figure 1: Qualitative comparison of the phantoms and the best
reconstructions in terms of PSNR (all achieved by the proposed
DIP). The gray scale goes from 0 (black) to 60 or 40 (white), for
the shape and resolution phantom respectively.

IV. Discussion and conclusion

In summary, we have multiple main findings illustrated
by the quantitative results in the present work. First, the
proposed deep image prior approach based on an au-
toencoder architecture outperforms all other methods
considered in this study. The superior behavior of the
DIP is particularly found for smaller numbers of training
steps (early stopping) when determining the network pa-
rameters. Second, the results for the KACZ class, which
is also characterized by limited numbers of iterations
(early stopping), illustrate the success of the algebraic re-
construction technique with sole `2-penalty in MPI [11].
The data and noise structure in MPI seem to be benefi-
cial for the iterative nature of DIP and KACZ methods.
Within the KACZ methods, it turned out that the com-
bination of `2- and `1-terms in the penalty can result in
improved reconstructions compared to the commonly
used reconstruction method in MPI. One drawback of the
superior reachable image quality in this method is the
additional regularization parameter, which is often diffi-
cult to choose. An automated choice of these parameters
is highly desirable for one-click image reconstructions in
applications. The intense study of regularization parame-
ter choice rules for all considered methods in the context
of MPI is beyond the scope of the present work and thus
remains future work. Third, this study emphasizes the
need for a careful discussion and distinction between dif-
ferent regularization techniques. Variational approaches
(VAR) strongly rely on a proper choice of the data fidelity
term, i.e., prior knowledge on the data space and noise

distribution. A standard `2-data fidelity term is not well
suited for MPI reconstructions. Similar to the findings
in [23], an `1-data fidelity term is better suited for MPI
reconstruction, not only in the DIP method but also in
the VAR methods. This holds even if the data space is
projected onto a subspace spanned by singular vectors.
The latter finding also emphasizes the need for future
research on the identification and proper treatment of
the MPI noise structure for the purpose of image recon-
struction. Future work also include a validation on larger
datasets and a comparison to learned methods [24]. In
particular the latter requires a sufficiently large MPI data
basis which needs to be set up in the future.
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Methods PSNRs SSIMs
τ= 0 τ= 1 τ= 3 τ= 5 τ= 0 τ= 1 τ= 3 τ= 5

DIP D`1 + P-

KACZ D`2 + P`2

KACZ D`2 + P`1

KACZ+TSVD D`2 + P`1

KACZ D`2 + P(`1+`2)

VAR D`1 + P`1

VAR D`1 + P`2

VAR D`1 + P TV

Figure 2: The best reconstructions for the shape phantom, corresponding to the values in Tables 1 and 5 for varying SNR-type
thresholds τ. The color scale goes from 0 (black) to 60 (white). Each image is separated into three vertically stacked parts,
which are separated by red lines. Each of these parts represents one of the three central slices/planes of the three-dimensional
reconstruction (x-y-, x-z-, and y-z-plane from top to bottom).
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Methods PSNRs SSIMs
τ= 0 τ= 1 τ= 3 τ= 5 τ= 0 τ= 1 τ= 3 τ= 5

DIP D`1 + P-

KACZ D`2 + P`2

KACZ D`2 + P`1

KACZ+TSVD D`2 + P`1

KACZ D`2 + P(`1+`2)

VAR D`1 + P`1

VAR D`1 + P`2

VAR D`1 + P TV

Figure 3: The best reconstructions for the resolution phantom, corresponding to the values in Tables 2 and 6 for varying SNR-type
thresholds τ. The color scale goes from 0 (black) to 40 (white). Each image is separated into three vertically stacked parts,
which are separated by red lines. Each of these parts represents one of the three central slices/planes of the three-dimensional
reconstruction (x-y-, x-z-, and y-z-plane from top to bottom).
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Methods PSNRs SSIMs
τ= 0 τ= 1 τ= 3 τ= 5 τ= 0 τ= 1 τ= 3 τ= 5

DIP D`1 + P- 26.70 29.59 29.79 29.81 0.926 0.966 0.962 0.965
KACZ D`2 + P`2 27.50 27.69 27.78 27.78 0.925 0.935 0.943 0.939
KACZ D`2 + P`1 24.06 24.03 16.71 14.69 0.794 0.786 0.458 0.209
KACZ+TSVD D`2 + P`1 27.14 27.23 27.39 27.54 0.919 0.916 0.937 0.939
KACZ D`2 + P(`1+`2) 28.03 28.28 28.36 28.20 0.939 0.943 0.947 0.944
VAR D`1 + P`1 18.25 19.93 21.47 21.83 0.749 0.799 0.809 0.842
VAR D`1 + P`2 23.78 25.84 24.88 25.44 0.835 0.834 0.792 0.798
VAR D`1 + P TV 24.37 26.21 24.87 26.42 0.848 0.916 0.866 0.900
VAR D`2 + P`1 17.04 19.01 23.62 24.96 0.596 0.684 0.887 0.896
VAR D`2 + P`2 19.85 21.32 25.12 25.43 0.638 0.700 0.887 0.883
VAR D`2 + P TV 19.52 20.69 24.70 24.78 0.613 0.685 0.887 0.891

Table 3: PSNR and SSIM values as achieved by the different SNR-type thresholds τ settings for the shape phantom without
whitening. Largest values for each column are in bold font. The overall largest value is underlined. The corresponding parameter
choices including the iteration number s for DIP and KACZ can be found in Table 7.

Methods PSNRs SSIMs
τ= 0 τ= 1 τ= 3 τ= 5 τ= 0 τ= 1 τ= 3 τ= 5

DIP D`1 + P- 32.02 31.97 31.66 31.63 0.912 0.945 0.939 0.943
KACZ D`2 + P`2 31.16 31.38 31.45 31.27 0.938 0.941 0.946 0.944
KACZ D`2 + P`1 31.66 31.58 29.34 28.99 0.938 0.937 0.828 0.761
KACZ+TSVD D`2 + P`1 31.68 31.71 31.22 30.86 0.939 0.941 0.936 0.934
KACZ D`2 + P(`1+`2) 31.56 31.69 31.65 31.46 0.942 0.944 0.947 0.945
VAR D`1 + P`1 29.85 30.57 29.80 29.72 0.896 0.904 0.905 0.889
VAR D`1 + P`2 30.87 31.34 31.00 30.93 0.921 0.940 0.936 0.934
VAR D`1 + P TV 31.02 31.29 30.61 30.35 0.916 0.938 0.929 0.927
VAR D`2 + P`1 28.87 29.17 29.14 29.82 0.782 0.829 0.882 0.898
VAR D`2 + P`2 29.49 29.53 30.42 30.42 0.811 0.847 0.906 0.911
VAR D`2 + P TV 29.20 29.39 29.87 29.85 0.808 0.845 0.899 0.908

Table 4: PSNR and SSIM values as achieved by the different SNR-type thresholds τ settings for the resolution phantom without
whitening. Largest values for each column are in bold font. The overall largest value is underlined. The corresponding parameter
choices including the iteration number s for DIP and KACZ can be found in Table 8.
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Methods PSNRs SSIMs
τ= 0 τ= 1 τ= 3 τ= 5 τ= 0 τ= 1 τ= 3 τ= 5

DIP D`1 + P-

KACZ D`2 + P`2

KACZ D`2 + P`1

KACZ+TSVD D`2 + P`1

KACZ D`2 + P(`1+`2)

VAR D`1 + P`1

VAR D`1 + P`2

VAR D`1 + P TV

Figure 4: The best reconstructions for the shape phantom without whitening, corresponding to the values in Tables 3 and 7.
The color scale goes from 0 (black) to 60 (white). Each image is separated into three vertically stacked parts, which are separated
by red lines. Each of these parts represents one of the three central slices/planes of the three-dimensional reconstruction (x-y-,
x-z-, and y-z-plane from top to bottom).
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Methods PSNRs SSIMs
τ= 0 τ= 1 τ= 3 τ= 5 τ= 0 τ= 1 τ= 3 τ= 5

DIP D`1 + P-

KACZ D`2 + P`2

KACZ D`2 + P`1

KACZ+TSVD D`2 + P`1

KACZ D`2 + P(`1+`2)

VAR D`1 + P`1

VAR D`1 + P`2

VAR D`1 + P TV

Figure 5: The best reconstructions for the resolution phantom without whitening, corresponding to the values in Tables 4 and 8.
The color scale goes from 0 (black) to 40 (white). Each image is separated into three vertically stacked parts, which are separated
by red lines. Each of these parts represents one of the three central slices/planes of the three-dimensional reconstruction.
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τ= 0 τ= 1 τ= 3 τ= 5
PSNRs

DIP D`1 + P- α3, s = 200 α4, s = 150 α4, s = 225 α3, s = 350
KACZ D`2 + P`2 ρ15, s = 5 ρ12, s = 4 ρ12, s = 4 ρ12, s = 5
KACZ D`2 + P`1 λ5, s = 1 λ5, s = 1 λ3, s = 1 λ1, s = 1
KACZ+TSVD D`2 + P`1 d = 512, λ6, s = 1 d = 512, λ6, s = 1 d = 512, λ5, s = 1 d = 512, λ5, s = 1
KACZ D`2 + P(`1+`2) ρ16, λ6, s = 2 ρ14, λ6, s = 2 ρ13, λ6, s = 2 ρ13, λ6, s = 2
VAR D`1 + P`1 λ16 λ8 λ6 λ7

VAR D`1 + P`2 ρ6 ρ4 ρ4 ρ4

VAR D`1 + P TV µ8 µ5 µ7 µ6

VAR D`2 + P`1 λ50 λ50 λ11 λ12

VAR D`2 + P`2 ρ9 ρ8 ρ9 ρ9

VAR D`2 + P TV µ10 µ8 µ12 µ13
SSIMs

DIP D`1 + P- α3, s = 400 α4, s = 250 α3, s = 375 α3, s = 250
KACZ D`2 + P`2 ρ15, s = 10 ρ12, s = 11 ρ11, s = 14 ρ12, s = 12
KACZ D`2 + P`1 λ4, s = 1 λ4, s = 1 λ1, s = 1 λ1, s = 1
KACZ+TSVD D`2 + P`1 d = 256, λ6, s = 2 d = 256, λ6, s = 2 d = 128, λ7, s = 7 d = 256, λ6, s = 2
KACZ D`2 + P(`1+`2) ρ16, λ7, s = 6 ρ13, λ6, s = 4 ρ13, λ6, s = 5 ρ13, λ6, s = 5
VAR D`1 + P`1 λ12 λ6 λ6 λ6

VAR D`1 + P`2 ρ7 ρ5 ρ4 ρ5

VAR D`1 + P TV µ10 µ7 µ7 µ6

VAR D`2 + P`1 λ50 λ50 λ14 λ12

VAR D`2 + P`2 ρ10 ρ8 ρ10 ρ10

VAR D`2 + P TV µ13 µ12 µ12 µ13

Table 5: Optimal parameters creating the results for the shape phantom with whitening as displayed in Table 1. ρi = 0.5i−1,
λi ,µi analogously and αi = 10−i .

τ= 0 τ= 1 τ= 3 τ= 5
PSNRs

DIP D`1 + P- α4, s = 1100 α3, s = 5000 α3, s = 11000 α4, s = 4000
KACZ D`2 + P`2 ρ17, s = 5 ρ17, s = 25 ρ16, s = 25 ρ16, s = 27
KACZ D`2 + P`1 λ7, s = 1 λ7, s = 4 λ5, s = 2 λ5, s = 1
KACZ+TSVD D`2 + P`1 d = 1024, λ7, s = 1 d = 1024, λ7, s = 8 d = 512, λ8, s = 14 d = 512, λ8, s = 10
KACZ D`2 + P(`1+`2) ρ19, λ8, s = 2 ρ19, λ9, s = 35 ρ18, λ8, s = 18 ρ18, λ9, s = 24
VAR D`1 + P`1 λ8 λ5 λ8 λ7

VAR D`1 + P`2 ρ5 ρ3 ρ2 ρ4

VAR D`1 + P TV µ11 µ8 µ9 µ9

VAR D`2 + P`1 λ13 λ12 λ14 λ15

VAR D`2 + P`2 ρ12 ρ11 ρ12 ρ13

VAR D`2 + P TV µ15 µ13 µ16 µ18
SSIMs

DIP D`1 + P- α4, s = 3500 α4, s = 1900 α3, s = 3500 α4, s = 900
KACZ D`2 + P`2 ρ18, s = 11 ρ14, s = 11 ρ14, s = 11 ρ14, s = 12
KACZ D`2 + P`1 λ7, s = 1 λ8, s = 1 λ6, s = 1 λ5, s = 1
KACZ+TSVD D`2 + P`1 d = 1024, λ8, s = 1 d = 1024, λ8, s = 1 d = 512, λ8, s = 3 d = 512, λ8, s = 3
KACZ D`2 + P(`1+`2) ρ19, λ9, s = 5 ρ16, λ8, s = 3 ρ15, λ9, s = 5 ρ15, λ10, s = 8
VAR D`1 + P`1 λ8 λ8 λ7 λ7

VAR D`1 + P`2 ρ5 ρ3 ρ3 ρ3

VAR D`1 + P TV µ11 µ9 µ8 µ8

VAR D`2 + P`1 λ40 λ17 λ40 λ15

VAR D`2 + P`2 ρ12 ρ11 ρ12 ρ12

VAR D`2 + P TV µ15 µ16 µ17 µ17

Table 6: Optimal parameters creating the results for the resolution phantom with whitening as displayed in Table 2. ρi = 0.5i−1,
λi ,µi analogously and αi = 10−i .
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τ= 0 τ= 1 τ= 3 τ= 5
PSNRs

DIP D`1 + P- α3, s = 325 α4, s = 350 α3, s = 350 α3, s = 325
KACZ D`2 + P`2 ρ15, s = 6 ρ13, s = 7 ρ12, s = 5 ρ12, s = 7
KACZ D`2 + P`1 λ4, s = 1 λ4, s = 1 λ1, s = 1 λ1, s = 1
KACZ+TSVD D`2 + P`1 d = 512, λ5, s = 1 d = 512, λ5, s = 1 d = 128, λ6, s = 4 d = 128, λ6, s = 4
KACZ D`2 + P(`1+`2) ρ16, λ6, s = 3 ρ15, λ6, s = 3 ρ13, λ6, s = 3 ρ14, λ6, s = 3
VAR D`1 + P`1 λ7 λ8 λ6 λ7

VAR D`1 + P`2 ρ7 ρ6 ρ5 ρ6

VAR D`1 + P TV µ8 µ8 µ7 µ8

VAR D`2 + P`1 λ6 λ40 λ11 λ11

VAR D`2 + P`2 ρ9 ρ8 ρ10 ρ10

VAR D`2 + P TV µ10 µ9 µ12 µ12
SSIMs

DIP D`1 + P- α3, s = 475 α4, s = 400 α3, s = 425 α3, s = 700
KACZ D`2 + P`2 ρ15, s = 12 ρ13, s = 15 ρ13, s = 20 ρ13, s = 20
KACZ D`2 + P`1 λ4, s = 1 λ4, s = 1 λ1, s = 1 λ1, s = 1
KACZ+TSVD D`2 + P`1 d = 256, λ6, s = 2 d = 256, λ6, s = 2 d = 128, λ7, s = 7 d = 128, λ7, s = 7
KACZ D`2 + P(`1+`2) ρ16, λ7, s = 8 ρ15, λ7, s = 9 ρ13, λ7, s = 12 ρ14, λ7, s = 12
VAR D`1 + P`1 λ27 λ7 λ6 λ6

VAR D`1 + P`2 ρ8 ρ6 ρ6 ρ6

VAR D`1 + P TV µ8 µ8 µ8 µ8

VAR D`2 + P`1 λ40 λ40 λ40 λ12

VAR D`2 + P`2 ρ10 ρ10 ρ12 ρ12

VAR D`2 + P TV µ11 µ15 µ16 µ15

Table 7: Optimal parameters creating the results for the shape phantom without whitening as displayed in Table 3. ρi = 0.5i−1,
λi ,µi analogously and αi = 10−i .

τ= 0 τ= 1 τ= 3 τ= 5
PSNRs

DIP D`1 + P- α4, s = 14000 α4, s = 6000 α3, s = 3500 α4, s = 4000
KACZ D`2 + P`2 ρ17, s = 16 ρ16, s = 5 ρ15, s = 6 ρ16, s = 29
KACZ D`2 + P`1 λ7, s = 1 λ7, s = 1 λ5, s = 1 λ4, s = 1
KACZ+TSVD D`2 + P`1 d = 1024, λ7, s = 1 d = 1024, λ8, s = 1 d = 512, λ7, s = 1 d = 512, λ7, s = 4
KACZ D`2 + P(`1+`2) ρ19, λ8, s = 2 ρ18, λ8, s = 2 ρ16, λ8, s = 2 ρ17, λ8, s = 3
VAR D`1 + P`1 λ8 λ7 λ8 λ8

VAR D`1 + P`2 ρ6 ρ4 ρ4 ρ4

VAR D`1 + P TV µ11 µ10 µ11 µ10

VAR D`2 + P`1 λ18 λ14 λ15 λ15

VAR D`2 + P`2 ρ13 ρ12 ρ13 ρ13

VAR D`2 + P TV µ15 µ16 µ16 µ16
SSIMs

DIP D`1 + P- α4, s = 4500 α4, s = 1600 α3, s = 1800 α4, s = 6000
KACZ D`2 + P`2 ρ18, s = 12 ρ17, s = 14 ρ15, s = 14 ρ16, s = 17
KACZ D`2 + P`1 λ7, s = 1 λ7, s = 1 λ5, s = 1 λ4, s = 1
KACZ+TSVD D`2 + P`1 d = 1024, λ8, s = 1 d = 1024, λ8, s = 2 d = 512, λ8, s = 2 d = 256, λ10, s = 12
KACZ D`2 + P(`1+`2) ρ20, λ8, s = 4 ρ18, λ9, s = 5 ρ17, λ9, s = 6 ρ17, λ9, s = 8
VAR D`1 + P`1 λ17 λ9 λ9 λ8

VAR D`1 + P`2 ρ6 ρ5 ρ4 ρ4

VAR D`1 + P TV µ12 µ10 µ9 µ10

VAR D`2 + P`1 λ40 λ18 λ17 λ40

VAR D`2 + P`2 ρ12 ρ12 ρ13 ρ14

VAR D`2 + P TV µ14 µ17 µ17 µ19

Table 8: Optimal parameters creating the results for the resolution phantom without whitening as displayed in Table 4.
ρi = 0.5i−1, λi ,µi analogously and αi = 10−i .
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Figure 6: The autoencoder architecture of the 3D DIP. (The style of the depiction is following [40].)
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Figure 7: Plot of the loss, PSNRs, and SSIMs over time for the best (DIP) shape reconstruction.
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Figure 8: Plot of the loss, PSNRs, and SSIMs over time for the best (DIP) resolution reconstruction.
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