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Abstract
Due to its broad range of applications in biology and medicine, detection of magnetic particles gains increasing
importance. The established method of magnetic particle imaging (MPI) bases on the non-linear magnetization
behavior of superparamagnetic nanoparticles [1]. As an alternative approach, rotational drift spectroscopy (RDS)
[2, 3] aims at detecting the properties of magnetic particles in liquid suspensions based on their motional behavior
inside an external rotating magnetic field. Serving as basis for the physical understanding and further development
of RDS, the rotational behavior of particles with and without motional restriction is studied by numerical simulation.
For this purpose, two different approaches were implemented: one using an explicit Euler algorithm and an
improved version using a semi-analytical two-step procedure in order to overcome numerical instabilities of the
original code. The results show independently of motional restriction two characteristic types of rotational behavior.
The particles either follow the external field with a locked phase lag or exhibit a rotational drift.

I. Introduction

In comparison with nuclear magnetic resonance (NMR),
which only allows indirect detection of magnetic parti-
cles via a negative contrast, magnetic particle imaging
(MPI) [1] enables a direct detection. This offers advan-
tages concerning sensitivity as well as specificity. Devel-
oped as an alternative to the originally proposed MPI,
rotational drift spectroscopy (RDS) [2, 3] also aims at di-
rectly detecting magnetic particles in liquid suspension.
A focus herein is the examination of particle- and envi-
ronmental properties, for which RDS offers potential for
specifically high sensitivity. Using functionalized parti-
cles, this opens a path to bio-sensing applications. Thus
primarily conceived as a spectroscopic modality, there
are also concepts on how to extend it towards an imaging
method [4].

While MPI is based on the non-linear magnetization
behavior of superparamagnetic nanoparticles, the con-
cept of RDS is based on the rotational drift of magnetic
particles in liquid suspensions. The optical detection

of the rotational behavior of individual micro-particles
driven by an external magnetic field B has been previ-
ously published [5]. In that publication B rotates in a
plane (hereafter referred to as xy-plane) with constant
amplitude B and frequencyω0. Due to constraints im-
posed by the experimental setup, the motion of particles
was restricted to the xy-plane (hereafter referred to as 2D
system). Depending on the ratio β =Ωcω

−1
0 of the driv-

ing frequencyω0 and a critical frequency Ωc =m Bζ−1

two different types of rotational behavior were observed.
In the expression for Ωc , m describes the amplitude of
the magnetic moment m of the particle and the friction
coefficient ζ=ηκV includes the shape factor κ and the
particle volume V as well as the dynamic viscosity η of
the surrounding fluid.

For β ≥ 1 the magnetization vector of the particle
follows the external field with a characteristic phase lag
(lock case). For 0< β < 1 the magnetization vector per-
forms a non-linear rotational drift at periodically oscil-
lating angular velocity Ω[t ] and period of oscillation T
(drift case). The average angular velocity Ω = 2πT −1 in
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this drift case is given by [5]

Ω=ω0−
Æ

ω0−Ω2
c for ω0 >Ωc (1)

only depending on parameters of the external field and
the observed system (particles and environment). There-
fore, it is a characteristic of the system under observation
- comparable to the Larmor frequency in magnetic reso-
nance.

RDS aims at measuring inductively the behavior of
magnetic particle ensembles as well as their interaction
with their environment based on the effect of rotational
drift. Thus, for further developments of the RDS concept,
mathematical description and simulation of this effect
including systems with no motional restriction to the
plane of the external field (3D systems) is fundamental
and investigated in more detail within this work.

II. Material and Methods
In contrast to the description of the magnetization be-
havior of SPIOs based on the Langevin theory of para-
magnetism, the dynamics of the particles considered in
[5] can be described by the time evolution of a magnetic
moment m . This moment is assumed to be locked rela-
tively to the particle geometry and has a time constant
amplitude m . The corresponding equation of motion is
given by [6] (neglecting white noise driving torque):

dm

dt
=

1

ζ
(m ×B )×m . (2)

For further considerations, B was chosen as a vector ro-
tating in the xy-plane with time constant angular velocity
and amplitude following the assumptions in [5].

First numerical RDS simulations [7] based on an ex-
plicit Euler method and thus discretization of Eq. (2):

m [ti+1] =m [ti ] +
1

ζ
(m [ti ]×B [ti ])×m [ti ]∆t . (3)

A successive normalization step of m is required to ac-
count for the conservation of the amplitude m .

To resolve issues resulting from this algorithm, an
additional semi-analytical two-step procedure was im-
plemented. For this, it was advantageous to change the
frame of reference in the following to a coordinate system
rotating with B as shown in [8]. In this rotating frame
of reference the orthonormal unit vectors {êx , êy , êz } are
chosen to have êx in parallel to B and êz in parallel to its
axis of rotation. With that Eq. (2) transforms to

�

dm

dt

�

r
=Ωr ×m (4)

with substitution

Ωr [t ] =Ωc (n̂m [t ]× êx )−ω0êz . (5)

Eq. (4) describes a rotation of m around a current axis of
rotationΩr [t ] (depending on the current orientation n̂[t ]
of m with m [t ] = m n̂m [t ]), while the amplitude Ωr [t ]
corresponds to the current angular velocity of m in the
rotating frame of reference. This fact is used by the nu-
merical two-step procedure. In the first step, the current
axis Ωr [ti ] = Ωr [ti ]n̂Ωr

[ti ] (according to Eq. (5)) and an-
gle of rotation ∆ϑ[ti ] = Ωr [ti ]∆t are calculated. In the
second step, the rotation of m around this current axis
is executed by using a rotation matrix R :

m [ti+1] =R
�

n̂Ωr
[ti ],∆ϑ [ti ]

�

m [ti ] . (6)

This second algorithm is norm conserving and requires
no renormalization as the explicit Euler method.

All data presented in subsection III.I result from nu-
merical simulations based on this two-step procedure.
The numbers #T0

of periods T0 of the external field B
was chosen depending on the questions under investi-
gation, ranging from #T0

= 10 to #T0
= 100. The corre-

sponding number of time steps ∆t per period T0 was
chosen to #∆t /T0

=∆t /T0 = 1 ·103, which provides reason-
able numerical results as shown below. To investigate
the influence of parameters of the observed system, the
simulations were performed for various values of β . The
influence of the starting position n̂m [0] was analyzed
by choosing sets with different numbers #n̂m [0] of nor-
malized magnetization vectors. The orientations were
chosen - independent and identically distributed - on a
surface of a sphere using an algorithm following [9].

III. Results and Discussion

III.I. Rotational behavior
To obtain better understanding of rotational behavior
of 3D systems, initially the time evolution of m was
simulated for different starting orientations n̂m [0] for
β < 1 (49 orientations) as well as β ≥ 1 (51 orientations)
(two-step procedure; simulation parameters: #T0

= 10,
#∆t /T0

= 1 ·103, #n̂m [0] = 1000). The resulting trajectories
in the rotating frame of reference are shown in Fig. 1 for
two β values and four starting orientations (gray arrows).
This includes one starting orientation in the xy-plane
(dark gray arrow), which corresponds to the special case
of the 2D system. Here, the motion is even for the unre-
stricted case confined to the xy-plane.

The simulated data shows that, in a similar manner to
the behavior of 2D systems, also in 3D two different types
of rotational behavior depending on β occur. These can
be regarded as a ’strong coupling’ of the external drive
field with the magnetic moment in the lock case (β ≥ 1)
and a ’weak coupling’ in the drift case (β < 1).

For β ≥ 1 (see Fig. 1a), the magnetization performs
a transitional motion towards a steady-state in the xy-
plane. Considering the simulated n̂m [t ] data in spheri-
cal coordinates, this corresponds to a transition of the
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Figure 1: Trajectories of m in the rotating frame: Depending
onβ , two different types of rotational behavior can be observed.
a) lock case: For β ≥ 1, the magnetization performs a transi-
tional motion to a β-dependent characteristic position (blue
arrow) in the xy-plane (gray circle). b) drift case: For β < 1,
the magnetization precesses around a constant rotation axis
resulting in circular trajectories.

polar angle θ towards π/2 for all simulated starting ori-
entations n̂m [0] and β values. Statistical evaluation of
this transition shows that for each β > 1 the standard
deviation of all orientations of n̂m [t ] decreases rapidly
towards std[θ ] = 6.22 ·10−15 - independently of the origi-
nal starting orientation. This limit is given by attainable
numerical precision. The higher the value ofβ , the faster
this transitional motion takes place. Thus, e.g. for β = 7
it takes less than one period T0 of the external field until
reaching this final standard deviation, where for β = 1.2
this transition takes approximately ten periods T0 and
for β = 1.01 more than 40T0. For each individual value
of β all magnetization vectors end up in the same point
in the xy-plane. The corresponding azimuth angle ϕ[β ]
matches the characteristic phase lag of the 2D system as
shown in Fig. 2. The simulated values depicted in this
figure correspond to the ensemble average 〈ϕ〉 over all
starting orientations for each individual β value at the
time at which the standard deviation converges as de-
scribed above. The standard deviation std[θ ] associated
with 〈ϕ〉 is less than 6 ·10−14, which again constitutes the
attainable numerical precision limit. The theoretically
predicted curve bases on the functional dependency in
the 2D system [5]

ϕ[β ] =−arcsin[1/β ] . (7)

The deviation of the simulated data relative to the theo-
retically prediction in Eq. (7) is less than 4 ·10−12.

For β < 1 (see Fig. 1b) the vector of the magnetic mo-
ment m performs a precessing motion on a cone (for rea-
sons of clarity only depicted for one starting orientation)
resulting in closed circular trajectories. This corresponds
to a time-constant specific orientation n̂Ωr

[t ] = n̂Ωr
[0] =

n̂Ωr
of Ωr for all magnetization vectors starting on the

same cone. This constancy of n̂Ωr
can be shown in the

simulated data by deriving the angle

∆χΩr
= arccos

�

n̂Ωr
[ti ] · n̂Ωr

[0]
�

(8)

Figure 2: Functional dependency ϕ[β ] of the resulting time
constant phase lag in the xy-plane for β ≥ 1 (dark blue dots:
simulated ensemble average 〈ϕ〉; blue curve: theoretically pre-
dicted dependency according to Eq. (7)).

between the starting orientation n̂Ωr
[0] and the orienta-

tion n̂Ωr
[ti ] at all other simulated times. Statistical evalu-

ation of these resulting angles shows a maximum stan-
dard deviation std

�

cos
�

∆χΩr

��

< 3 ·10−16. So, within the
attainable numerical precision, no significant change in
the orientation of Ωr is observed.

Figure 3: Simulation of the orientation of Ωr (two-step pro-
cedure; simulation parameters: #T0

= 10, #∆t /T0
= 1 · 103,

#n̂m [0] = 1000 here shown for β = {0.1,0.2,0.4,0.6,0.8,0.9}):
resulting distribution of angular coordinates ψΩr

depending
on β .
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However, the respective orientation of n̂Ωr
depends

on β and n̂Ωr
[0] and has (resulting from cross product

with êx ) no x-component:

n̂Ωr
=
Ωr

|Ωr |
=
β
�

n̂Ωr
[0]× êx

�

− êz

|β
�

n̂Ωr
[0]× êx

�

− êz |
. (9)

Therefore, the orientation of n̂Ωr
can be fully described

via the angular coordinateψΩr
in the yz-plane (counting

clockwise starting from the z-axis), which shows based
on Eq. (9) a characteristic distribution depending on β
(see Fig. 3).

As opposed to the orientation of Ωr the correspond-
ing amplitude, which equals the angular velocity Ωr [t ],
is not constant over time but oscillates periodically. To
examine the average angular velocity Ωr , the period
of oscillation Tr = 2π/Ωr was determined for all sim-
ulated trajectories (same data as used for the exami-
nation of the constancy of n̂Ωr

) via the 2π-periodicity
ϑ[ti +Tr ] = ϑ[ti ] + 2π of the accumulated angle of rota-
tion ϑ[ti ] =

∑i
n∆ϑ[tn ]. The corresponding error of the

determined values thus results from the selected time res-
olution of the simulation∆t = T0/#∆t /T0

. A comparison
of all Tr values resulting from the 1000 starting orienta-
tions n̂Ωr

[0] for one defined β value shows a standard
deviation std [Tr ] < 2.5 · 10−13. Thus, within the attain-
able numerical precision, all trajectories of one definedβ
value have the same average angular velocityΩr = 2π/Tr .
Therefore, the average angular velocity Ωr in the rotat-
ing frame of reference for 2D systems given according to
Eq. (1) also holds true in 3D:

Ωr

ω0
=
Æ

1−β 2 . (10)

Figure 4: Functional dependency of the average angular ve-
locity Ωr [β ] in the rotating frame of reference (dark blue dots:
mean values 〈Ωr 〉 of all trajectories corresponding to one β
value; blue curve: theoretical prediction according to Eq. (10)).
The simulated and theoretical values are compatible within
the range of errors resulting from the time resolution of the
simulation.

This functional dependency is plotted in Fig. 4.
Therein, the depicted values correspond to the mean

values 〈Ωr 〉 of all trajectories of one β value. They show
a maximum deviation of less than 0.03% relative to the
theoretically predicted values according to Eq. (9). This
is within the range of errors resulting from the time reso-
lution of the simulation.

III.II. Comparison of numerical
algorithms

For comparing the implemented numerical algorithms,
simulations - with at first identical number of time steps
#∆t /T0

- were performed with either algorithm. The re-
sulting trajectories in the rotating frame (in which the
orientation n̂B of the external field B is aligned with the
x-axis constant over time) are shown in Fig. 5.

Figure 5: Comparison of the trajectories (blue curves; start-
ing orientation n̂m : blue arrow) in the rotating frame with cor-
responding axes of rotation (red lines; solid: t = 0, dashed:
t = 100T0) resulting from numerical simulations at different
numbers of time steps #∆t /T0

. Simulation parameters were:
#T0
= 100, β = 0.6, random starting orientation n̂m a) two-step

procedure b) explicit Euler method. In contrast to the two-step
procedure, the explicit Euler method does not provide stable
trajectories, which results in an angle∆χΩr

between the axes
of rotation over time (cf. parts b1 and b2). The stability can be
improved by increasing #∆t /T0

.

As shown in the previous subsection for simu-
lations of ten periods T0, even for #T0

= 100 the
data resulting from the two-step procedure describe
closed circular trajectories. Furthermore, consid-
ering the relative angle ∆χΩr

between the actual
orientation n̂Ωr

[ti ] of the axis of rotation for each
simulated time step ti and the starting orientation
n̂Ωr
[0], no significant change in ∆χΩr

can be observed
�

mean
�

cos
�

∆χΩr

��

= 1, std
�

cos
�

∆χΩr

��

= 2 ·10−16
�

.
The data of the explicit Euler method where derived

in the laboratory frame according to Eq. (3), but for better
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depiction, transformed in the rotating frame. As opposed
to the results from the two-step procedure, this algorithm
does not provide stable trajectories. This corresponds to
an apparent change in the orientation n̂Ωr

of the axis of ro-
tation: For the simulated data shown in Fig. 5b1, the axis
of rotation accumulates an angle∆χΩr

�

#∆t /T0
= 1 ·103

�

=
5.1◦ relative to n̂Ωr

[0] over 100 periods of T0. Increasing
the number of time steps per period reduces this rel-
ative angle

�

∆χΩr

�

#∆t /T0
= 2 ·103

�

= 2.5◦
�

and the devia-
tion from the expected circular trajectories (see Fig. 5b2),
but even for numbers of time steps three orders of mag-
nitude higher than the numbers of time steps chosen for
the two-step procedure (see Fig. 5b3), an increase of∆χΩr

can be observed
�

∆χΩr

�

#∆t /T0
= 1 ·106

�

> 16”
�

. In Fig. 6
the dependency of ∆χΩr

as given in Eq. (8) on time is
depicted for different values of β . It shows the temporal
increase of the error in the explicit Euler method depend-
ing on the number of time steps per period. The slight
oscillatory behavior of∆χΩr

is caused by the precession
of the magnetization around the drifting rotation axisΩr .
This causes a periodic change in the drift direction (see
Eq. (3) and Eq. (5)) and hence the observed oscillation
with the drift frequency Ωr .

Figure 6: Increase of the relative angle∆χΩr
between n̂Ωr

[ti ]
and n̂Ωr

[0] (cf. Eq. (8)) of the implemented explicit Euler
method (simulation parameters: #T0

= 100,β = 0.6, random
starting orientation n̂m ).

While the two-step procedure reliably yields stable
trajectories, the above results show that the easy-to-
implement Euler method can also be applied - as long
as a sufficiently high number of time steps per period is
used to minimize∆χΩr

.

IV. Conclusion
RDS requires knowledge about the 3D rotational behav-
ior of magnetic particles in rotating fields, but until now
this has only been described for motion restricted to
two dimensions. This work shows in numerical simula-
tions that characteristic parameters of the 2D motion -
constant phase lag ϕ[β ] in lock case and rotational drift

with an average angular velocity Ω[β ] in drift case - are
also exhibited in an unrestricted three dimensional sys-
tem. Instabilities in the originally employed explicit Euler
algorithm are overcome by an improved two-step pro-
cedure yielding stable trajectories. The implemented
algorithm is easily expandable to study systems of higher
complexity including parameter distributions for parti-
cles, thermal noise, or more complex field geometries.
Especially this expandability and its applicability to arbi-
trary field geometries are the benefits of the presented
numerical solution over an analytical solution that can
only cover one specific case. The numerical approach
successfully constitutes the essentials of an RDS toolbox
that will serve for further simulation of rotational drift
behavior to advance RDS.
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