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Abstract
The image reconstruction in Magnetic Particle Imaging (MPI) relies on efficiently solving an ill-posed inverse
problem. Current state-of-the-art reconstruction methods are either based on row-action methods with fast
convergence but limited noise suppression or advanced sparsity constraints showing better image quality, but
suffering from a higher computational complexity and slower convergence. In this contribution, we propose a
novel row-action framework where advanced sparsity constraints, e.g., a combination of l1- and TV-norm, can be
included. Its performance is numerically evaluated on simulated and real MPI data, showing a significant reduction
of computation time while retaining the enhanced imaging quality.

I Introduction

In Magnetic Particle Imaging (MPI), the reconstruction
of the tracer concentration is commonly based on a sys-
tem matrix approach. With the measured system matrix
A ∈ Cm×n , the measurement vector b ∈ Cm the recon-
struction of the tracer concentration x ∈Cn amounts to
solving

Ax = b .

This ill-posed problem is usually solved using a regular-
ized Kaczmarz approach based on Tikhonov regulariza-
tion. In terms of MPI, this method exhibits a fast con-
vergence due to near orthogonality of the system matrix.
On the downside, however, Tikhonov regularization re-
sults in smoothed edges, limited noise suppression as
well as reduced contrast [1]. In order to overcome these
issues, Storath et al. proposed the non-negative Fused
Lasso by introducing a combination of l1- (Lasso) and to-
tal variation (TV) regularization priors [1]. The improved
image quality that results from the total variation ap-
proach comes with a higher computational complexity

compared to the classical Kaczmarz approach. This is
quantified by a factor of seven in [1]. In this contribution,
we introduce a general sparse row-action framework for
inconsistent linear systems, where the combination of
l1/TV priors can be included into the regularization prob-
lem. Instead of the usual soft-thresholding operator that
results from the l1-norm penalty, we suggest to use the
non-negative Garrote (NNG), which is shown to signif-
icantly improve the reconstruction results. Numerical
evaluation is based on simulated MPI data and experi-
mental data from the OpenMPIData initiative [2].

II Material and methods

Let f (x ) = ||Ax − b ||22 and let R be a lower semicontin-
uous and convex penalty function, e.g., we consider a
combination of l1- and TV norm in the following. Mini-
mizing f (x )+R (x )with respect to x can be done using
the forward-backward splitting, given by the following
iteration xk+1 = p r o xγR (xk − γ∆ f (xk )) for some γ > 0.
This scheme is characterized by its gradient (forward)

10.18416/ijmpi.2020.2009002 © 2020 Infinite Science Publishing

mailto:florian.lieb@th-ab.de
https://dx.doi.org/10.18416/ijmpi.2020.2009002
https://dx.doi.org/10.18416/ijmpi.2020.2009002


International Journal on Magnetic Particle Imaging 2

Phantom Reg. KA Fused Lasso Fused NNG

Figure 1: Top: PSNR, SSIM and computation time for the
regularized Kaczmarz, the Fused Lasso and the Fused NNG
approach in dependence of the noise levelσ. Bottom: Recon-
structed tracer concentration forσ= 0.05.

step using f and its backward step based on the proxim-
ity operator of R . If R = 0 the forward-backward splitting
with constant γ = ||A||−2

2 results in the Landweber iter-
ation. With a T

i ∈ C
n denoting the i -th row of system

matrix A, this motivates the following Kaczmarz based
iteration

yk+1 =xk +
bi −〈ai , xk 〉
||ai ||22

a ∗i (1)

xk+1 =

�

p r o xR (yk+1) if mod(k , m ) = 0
yk+1 if mod(k , m ) 6= 0

where i =mod(k , m ). This iteration consists of repeat-
edly doing a Kaczmarz step sweeping over all rows of the
system matrix, followed by a proximal step. In order to
solve the minimization problem

min
x≥0

1

2
||Ax − b ||22+λ1||x ||1+λ2||x ||T V , (2)

the proximity operator of the corresponding penalty term
R =λ1||x ||1+λ2||x ||T V is given by the well-known prox-
imity operator of the isotropic TV-norm (the 2D/3D al-
gorithm introduced in [3] is used in the subsequent ex-
periments) followed by a soft-thresholding (see [7] for
a proof of this splitting in a multidimensional setting).
Substituting the soft-thresholding with the Nonnegative
Garrote (NNG) thresholding [4] defined by

Nλ(x ) = x ·max

�

1−
λ2

|x |2
, 0

�

leads to our proposed Fused NNG algorithm. This
changes the above minimization problem, however, the
corresponding penalty term for the NNG thresholding
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Figure 2: 3D reconstruction results in mmol/l.

operator still leads to sparse solutions [4]. Note that the
basic Kaczmarz iteration in our proposed algorithm (1)
only works for consistent linear systems [5]. In case of
inconsistent systems, such as in MPI, the Kaczmarz iter-
ation has been shown to converge whenever the noise of
the inconsistent system is quite low [Thm. 3.2, 6]. In the
case of MPI, SNR thresholding of the system matrix can
achieve such a low noise situation [5].

The experimental results in the following section are
based on a measured 2D Magnetic Particle Spectrom-
etry (MPS) system matrix (12mT in x- and y-direction,
discretized to a grid size of 57x57). Forward simulations
for a phantom x (Fig. 1, left) are given by b = A(σx ) +η,
with weights σ ∈ (0,1) and a noise vector η which con-
sists of averaged empty scanner measurements. The
smaller σ, the larger the influence of the background
η. From the resulting b only frequencies with SNR larger
than 1.5 and within the frequency range of 70-300 kHz
are considered for reconstruction. The resulting system
matrix has size 3065x3249. Comparison algorithms are
the regularized Kaczmarz (reg. KA) [5] and the Fused
Lasso [1]. Although all three algorithms do not solve
the same minimization problem, they are included in
order to put the performance of our Fused NNG into
perspective with state-of-the-art MPI reconstruction al-
gorithms. The stopping criterion of all algorithms is de-
fined to be the relative change between two iterations,
i.e., ||xk − xk+1||2||xk ||−1

2 < 3 ·10−4. Quality measures are
the PSNR, SSIM (optimal SSIM value is one) and an av-
eraged computation time (over 50 runs). Parameters λ1

and λ2 for all algorithms are chosen to maximize the
PSNR.

III Results and discussion

At top of Figure 1, the resulting quality measures for the
simulated data set in dependence on the noise level σ
are shown. Our proposed approach gives the best recon-
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struction results, except for the largest noise level in the
PSNR plot. The computation time for our Fused NNG is
approximately two seconds for all noise level.

Fig. 1 (bottom) illustrates the reconstructed tracer
concen-tration for the largest noise level σ = 0.05. It
shows the limited noise suppression of the regularized
Kaczmarz and that the Fused Lasso approach still has
some artefacts in the background (black parts of the
phantom) of the image, and explains the poorer SSIM
values compared to our approach. The reconstructed
values of the triangle (original value 0.0375) have a mean
of 0.0365±0.0078 for the reg. KA, 0.0370±0.0014 for the
Fused Lasso and 0.0356±0.0029 for our Fused NNG. This
translates to the slightly better PSNR of the Fused Lasso
for this noise level.

Results on experimental 3D MPI Data are based on
the data sets provided by the OpenMPIData initiative [2].
The shape phantom is used, which is a 3D cone filled
with perimag (50 mmol/l). For reconstruction, only fre-
quencies larger than 70 kHz and with a SNR larger than
four are considered. This results in a system matrix of
size 3870x6859. The reconstructed cone shape is visu-
alized in Fig. 2 in layer view. The homogeneity of the
tracer concentration inside the cone favors the Fused
Lasso in the xy-plane and our approach in the xz- as well
as yz-plane. In terms of absolute reconstructed tracer
concentration, both approaches lead to similar results
close to the original tracer concentration of 50 mmol/l,
with the Fused Lasso having slightly larger outliers.

The computation time for the regularized Kaczmarz
is 37.5 seconds and 27.3 seconds for the Fused Lasso.
Our proposed Fused NNG, on the other hand, cuts the
computation time down to approximately 2.4 seconds.

IV Conclusions
In summary, we have shown that the proposed sparse
row-action approach outperforms current state-of-the-

art MPI reconstruction algorithms in terms of PSNR and
SSIM. The Fused NNG approach reduces computation
time significantly, providing more accurate reconstruc-
tion results that are better suited in real-time applica-
tions such as catheter navigation in interventional radi-
ology. The extension of the NNG-thresholding to account
for neighboring pixel information is one of the next tar-
gets.
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