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Abstract
Different types of scanners have been presented since the first publication of Magnetic Particle Imaging (MPI) in
2005. As a result, there are different types of reconstruction methods available, which can be separated into two basic
concepts: reconstruction using a system matrix and reconstruction using a direct deconvolution. Both methods
have their merits and drawbacks. For the first approach hardware parameters like sampling rate and frequencies
have to be chosen carefully to fit the parameter selection process required for the system matrix. For the other
approach the temporal and spatial homogeneity of the magnetic field gradient over the entire FOV has to be high to
perform an accurate reconstruction, which results in smaller FOVs. This paper presents a novel reconstruction
method, which combines the advantages of both aforementioned methods to be more flexible during the entire
reconstruction process. Furthermore, it enables the possibility of performing a dynamic patch reconstruction,
which allows selecting arbitrary areas of the FOV for higher resolution reducing reconstruction time significantly. In
addition, this new reconstruction improves the image quality of a Traveling Wave MPI scanner substantially.

I. Introduction

Since the first publication of Magnetic Particle Imaging
(MPI) [1] several different scanner types were published
[2]. For each scanner type a reconstruction process is
available, which takes into account the scanning type,
field-free point (FFP) [1] or field-free line (FFL) [3], and
the scanning mode, trajectory of the FFP or projection of
the FFL. Basically, there are two different kinds of recon-
struction processes: the system matrix reconstruction
(SMR) [4] and the deconvolution reconstruction (DeR)
[5–7].

The DeR approach contains several steps: after the
acquisition of the signal, in a first step the distortion
caused by the receive chain has to be corrected before

the data are gridded to get a 1D or 2D raw-image. Finally,
this raw-image is reconstructed using a deconvolution
algorithm and corresponding kernel [6].

The SMR approach works with a transformation ma-
trix, which transforms the spatial distribution of the mag-
netic nanoparticles into the corresponding signal ac-
quired with the very system the matrix is designed for.
This matrix can be measured point-by-point acquiring
the signals of a delta-like sample, which is positioned
inside the FOV using a robot. This approach is very time
consuming but results in a transformation, which con-
tains all signal transformations as well as hardware dis-
tortions. Every dataset is run through a Fourier transfor-
mation before a set of peaks are chosen, which are used
in the system matrix as encoding parameters. Finally, the
reconstruction of the image can be performed by solving
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the inversion of the system matrix [4].
However, both basic methods come up with some

constraints: the SMR requires a specific choice of hard-
ware parameters like the sampling rate, the excitation
frequencies and the trigger point of the signal acquisition.
The reason is the peak-picking process for building the
system matrix. To avoid Fourier-leakage1 it is necessary
to choose these parameters carefully [8].

In addition, the trigger point has to be determined
precisely, because of phase errors that cause the recon-
struction to fail. This results in an inflexible hardware
setup, which has to be adapted to these parameters.

On the other side, the DeR does not have this restric-
tion. The reason is the gridding step, which decouples
the reconstruction process from the hardware. The sam-
pling rate, excitation frequencies and trigger point are
freely selectable. However, the drawback of the deconvo-
lution reconstruction is its sensitivity to trajectory distor-
tions caused by magnetic field inhomogeneities created
by the scanner hardware. Using a single deconvolution
kernel for the entire raw-image yields geometrically dis-
torted images and signal fluctuations. These issues can
be solved by using highly accurate magnetic fields and
smaller FOVs to ensure a uniform trajectory of the FFP.

Figure 1: Sketch of the dynamic linear gradient array (dLGA)
of a TWMPI scanner running in slice-scanning mode (SSM).
The black sinusoidal pattern indicates the trajectory of the FFP
traveling through the FOV, where (a) shows the optimal trajec-
tory and (b) shows the real trajectory. The real trajectory is
the result of a simulation of the real TWMPI scanner with the
frequencies f1 = 1 kHz and f2 = 16 kHz.

The traveling wave MPI scanner is an alternative scan-
ner design, which uses a dynamic linear gradient array
(dLGA) for the generation of a FFP with a strong gradient
traveling along the symmetry axis. Additional saddle-
coils, which are oriented orthogonally to the dLGA, are
used for moving the FFP arbitrarily through the FOV and
scanning an entire 3D volume with different trajectories.
A receive coil parallel to the dLGA is used for signal ac-
quisition [6, 9–11].

Because of the small hardware dimensions in contrast
to the size of the FOV, this scanner type comes up with

1Fourier-leakage or Fourier-bleeding: Performing a Fourier transfor-
mation of a discrete dataset results in a spectrum convolved by a sinc.
The energy will bleed over adjacent bins instead of being in a specific
bin. A similar effect is caused by the non-integer ratios of sampling
rate and frequencies.

a distorted magnetic field, which results in an irregular
trajectory of the FFP (see Fig. 1)2.

In previous publications a 2D deconvolution method
(DeR) followed by an additional morphing algorithm,
which corrects the distortions in a post-processing step,
were used for the image reconstruction [6, 9].

However, this correction step still shows geometry
distortions for reconstructing more complex samples
(see Fig. 2).

Figure 2: Reconstruction of the measured EP5 logo using the
deconvolution approach (DeR). The phantom consists of a
plastic tube (inner diameter of 0.5 mm) filled with undiluted
Resovist R© (Bayer, Germany).

This paper presents a novel reconstruction, which
combines parts of both reconstruction methods to over-
come the issues of geometry distortion caused by the
DeR and the inflexibility of the SMR.

II. Methods
In Fig. 3 a flow chart is presented to give an overview of
the different reconstruction methods. The new recon-
struction approach is a hybrid method, which combines
the system matrix with the flexibility of the DeR.

The basic part of the proposed reconstruction is a sys-
tem matrix approach, which either uses measurement-
based datasets [4] or model-based datasets [12]. Once
the system matrix has been obtained a Tikhonov regular-
ization algorithm or singular value decomposition (SVD)
algorithm can be used for the matrix inversion required
for image reconstruction [8, 13, 14].

The reconstruction process used in this manuscript
contains of three major steps:

1. Building the system matrix M

2. Performing a truncated SVD on M

3. Calculating the pseudo inverse M̃ −1 .

The system matrix M can be seen as the transfer function
between the measured data vector (image) u and the
source point distribution vector (distribution) c :

M c = u (1)

c =M −1u . (2)

2The chosen frequencies f1 and f2 for driving a TWMPI system in slice-
scanning mode (SSM) follow the rule to cover within one period of f1
a optimally dense trajectory while the frequencies stay in the range
below 20 kHz, which allows using common audio amplifiers.
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Figure 3: Flowchart of the different reconstruction methods
showing the basic steps required to reconstruct the final im-
ages.

To get the real distribution c the inverse of the system
matrix M −1 has to be calculated. A robust and flexible
method to solve such an ill-posed problem and deter-
mine M −1 is the SVD. For that the singular value decom-
position of the matrix M ∈Rm×n is calculated:

M =U W V T , (3)

U ∈Rm×m , V ∈Rn×n , W = diag (k1, . . . , kn ) ∈Rm×n .

These matrices can be used to determine the Moore-
Penrose pseudo inverse M̃ −1, which is a generalization
of M −1 and solves the reconstruction problem in a least
square sense

M̃ −1 =V W −1U T . (4)

With the pseudo inverse M̃ −1 the distribution c is calcu-
lated.

In the last step it is possible to optimize the recon-
struction by truncating the eigenvalues kt r un c and ap-
plying a suitable filter to weight the eigenvalues [15, 16].

The amount of parameters used for modeling the
system matrix is limited by the robustness of the inver-
sion algorithm and hardware limitations (RAM and CPU
power). The system matrix can be built using different
approaches.

II.I. Fourier-Based System Matrix
The first approach follows a similar pattern to the system
matrix approach using model-based datasets [8]. For a
TWMPI scanner, which uses a different trajectory [9], the

proposed peak-picking process [8] in the Fourier spec-
trum cannot be applied in this form on the TWMPI data,
because the trajectories follow different schemes [4]. In
the case of a TWMPI scanner using the rotational slice-
scanning mode (rSSM) [10] for scanning an entire 3D
volume, the Fourier spectrum of the signal shows multi-
ple combinations of higher harmonics and side bands
of the excitation frequencies f1 and f2 ( f1 < f2). The posi-
tion of the harmonics is given by the following scheme:

ki1,i2
=

¨

i2 f2+2i1 f1 , if i2 = odd

i2 f2+
�

2i1− sign(i2)
�

f1 , if i2 = even
, (5)

i1 ∈Z\{0}, i2 ∈N .

In Fig. 4 the table shows a small selection of the system
functions corresponding to their calculated harmonics
in the spectrum. These images are based on the real part
of the signal and describe the encoding pattern (system
functions) for the reconstruction process. With increas-
ing parameters and the pattern shows finer structures,
which demonstrate the encoding capacity. The real and
imaginary parts show different patterns, which increase
the number of encoding parameters available for the
system matrix.

Figure 4: Table of system functions based on a model-based
simulation of a TWMPI scanner. The different patterns give an
idea of the encoding process, which improves with the use of
more harmonics. The indicated areas (red rectangles) show the
problematic patterns, which are the result of Fourier-leakage.

The pattern images are based on a model-based
dataset created with a home-built software tool, which
can simulate the real TWMPI scanner [6, 9, 17]. The sam-
pling rate is set to 100 MS/s and the excitation frequen-
cies are f1 = 919 Hz and f2 = 16123 Hz. The frequencies
are based on the hardware of the TWMPI scanner: after
tuning and matching the coils, the exact eigenfrequency
of the system is determined. The sampling rate up to
100 MS/s is chosen for a lower noise level.

However, as mentioned this approach comes with the
issue that a specific sampling rate and frequency ratio
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is required to avoid Fourier-leakage. In addition, the
trigger point for data and system matrix datasets should
be identical. In Fig. 4 the issue related to Fourier-leakage
can be seen: for odd i2 the patterns are the same for
i1 =−i1. For even i2 the patterns should be inverted. The
red areas indicate the problematic patterns, which do not
show the expected behavior on both sides (see Sec. A).

To overcome this issue the time signal has to be re-
sampled to avoid Fourier-leakage. There are different
approaches available, which can be used for the resam-
pling process [18].

Because of the identical patterns in the side bands
(using the appropriate sign), only one part of the side
band can be used for building the system matrix in order
to avoid ambiguities. This causes a decrease in available
number of parameters.

Therefore, only the right side of the harmonic band
is used and real and imaginary parts have to be consid-
ered to build the system matrix. The reason is that the
encoding in z-direction is a pure encoding by phase (see
Sec. A) [9]. The picking process follows the formula:

Ii1,i2
=
�

�

i2 f2+ (2i1− ((i2+1)mod2)) f1

� ldata

SR
+0.5

�

, (6)

i1 ∈N, i2 ∈N\{1} ,

where Ii1,i2
denotes the index in the Fourier transformed

dataset with the length ldata and the sampling rate SR . It
has to be emphasized that in this case the peak picking
process starts at i2 = 2 at first because of the hardware
filtering (Chebychev high pass filter at 20 kHz) in the real
system.

For an initial test a system matrix with a size of
1932×1891 entries ((2×21×46)× (31×61)) is built with
the values i1 = 1, . . . , 21 and i2 = 2, . . . , 47 and a factor of 2
for real and imaginary parts.

In Fig. 5 the reconstruction results are shown for dif-
ferent values of ktrunc. With increasing ktrunc the image
quality increases but at the same time the stability of
the reconstruction process suffers. Moreover, even a
small variation of the trigger point of only 1/SR = 100 ns
(SR = 1 · 107 1/s) results in a massive decreasing of the
image quality.

In the following, an additional gridding step, known
from the DeR approach [11], is used before the parame-
ter selection to circumvent the resampling process3 and
the issue with the trigger point. This step decouples the
hardware and its parameters from the following recon-
struction process.

3A gridding process cannot completely overcome issues such as Fourier-
leakage. Gridding a data set point-by-point on a discrete surface also
requires rounding operations. However, the effect is much smaller
especially at very large surfaces.

Figure 5: Reconstruction using a Fourier-based system matrix
of a simulated phantom with different ktrunc values and trigger
points. Even small variations of the trigger point result in a
massive deterioration of the image.

II.II. Image-Based System Matrix

In contrast to the SMR using a measurement-based
system matrix the simulation-based system matrix ap-
proach requires a correction of the receive chain. This
has to be done after digitizing the acquired data be-
fore the gridding process, because of the amplitude and
phase distortions caused by individual components in
the receive chain like filters and pre-amplifiers (see Fig. 3).
The corrected signals are gridded point-by-point on a 2D
image according to the excitation frequencies used for
scanning [6, 11]. This gridding step mitigates the Fourier-
leakage arising from the frequency and sampling rate
ratio. Because of the high sampling rate (100 MS/s) and
the selection of a huge 2D image the mismatching of data
points and associated pixels is very small. It also solves
the issue with the trigger point described in Sec. II.I. After
this step all raw-images represent a ’normalized’ signal
regardless of the origin of the data (TWMPI scanner with
different settings or simulated datasets [17]). Thus, the
final raw-image is independent of the hardware and the
consecutive reconstruction process.

In Fig. 6 on the left a raw-image of a point-sample
is shown displaying the point-spread-function4 (PSF) of
the system at this specific position (here in the center of
the FOV) [4]. The raw-image varies slightly when moving
the sample step-by-step through the entire FOV. In the
end a set of n raw-images with a size of m , one for each
position, is available, which represent a point-by-point
transformation of the entire scanner system.

The image-based approach now directly uses the 24

4A TWMPI scanner provides two different shaped PSFs depending on
the alignment of the receive coil [9, 10]. Here the PSF for a receive coil
aligned into the z-direction (parallel to the dLGA) is shown.
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Figure 6: Building an image-based system matrix: as first step
the corrected raw-image is scaled down. After that every pixel
value is directly transferred to the system matrix with n labelling
the positions of the sample used for measurement or calcula-
tion of the PSF and m is the number of points in space, where
the PSF was calculated.

bit5 gray-scaled pixel values of the raw-image column-
by-column as encoding parameters, which are filled row-
wise into the system matrix (see Fig. 6).

Because of the highly resolved raw-images (up to
500 px× 500 px) the amount of pixels is extremely high.
This is useful to reduce gridding artifacts caused by the
choice of hardware parameters and mismatching of spa-
tial data points to pixels due to rounding errors. To avoid
a huge system matrix, which results in long calculation
times, the raw-images have to be scaled down prior to
creating the system matrix.

II.III. Fourier-Scaled Image-Based
System Matrix

The scaling process used in the image-based system ma-
trix to reduce the amount of data can lead to information
loss. This means decreasing the number of pixels in a
picture results in a reduction of information by averaging
pixel information. It is the same effect as using a cut-off
in the spectrum, which results in a loss of resolution. To
reduce this effect in Fig. 7 a view of a 2D Fourier spec-
trum of a raw-image is shown with most signal located
in the center corresponding to low frequencies.

According to Fig. 6 for the Fourier-based system ma-
trix approach the complex values from the center of
the 2D spectrum are pixel-wise filled in the system ma-
trix. This direct data processing reduces information loss
(here of lower frequencies) arising from the image scaling
process while yielding the same size of the system matrix.
It is important that only half of the spectrum must be
used because of redundant information in the spectrum.
This approach is quite similar to the peak-picking pro-
cess described in Sec. II.I but with the additional gridding
step.

5The ADC works with 12 bit. After digitization it is necessary to make
some corrections such as calculating the distortions of the receive
chain and filtering in Fourier space [11]. Thus, it is useful to work
with a higher precision on the values to avoid introducing numerical
errors.

Figure 7: After a 2D Fourier transformation the spectrum con-
tains most of the signal information in the center. This compact
signal can be directly used for filling up the system matrix.

It is also possible to reduce the resolution of the raw-
image by symmetrically cropping the 2D Fourier spec-
trum (Fig. 7). After an inverse 2D FFT a size-reduced
raw-image is obtained, which can be processed in the
same way as the image-based approach described in
Sec. II.II Because of the cropping in Fourier space the
information loss during the scaling process is different
from the direct scaling process (see Sec. B).

II.IV. Patch Reconstruction
In the last sections, ways to decouple the hardware from
the parameter-picking process for generating a system
matrix were presented. However, one issue remains to be
solved: for obtaining higher resolution the amount of pa-
rameters has to be increased to encode the desired FOV.
Increasing the size of the system matrix results in a more
time consuming inversion process using an SVD algo-
rithm. Of the presented approaches, the faster weighted
Tikhonov algorithm cannot be used because of the un-
known weighting of the eigenvalues, which is required
for filtering [14]. The spatial localization of the PSF (see
Fig. 7) combined with the image-based system matrix
(Sec. II.II) offers an option to avoid this issue. Using this
technique for building the system matrix allows defining
arbitrary areas on the image that can be reconstructed
separately. The selection of specific areas for the recon-
struction results in a significant reduction of computing
time. Furthermore, it even allows selecting areas that will
be reconstructed with a higher resolved system matrix
yielding higher resolved parts of the image. In Tab. 1 an
overview of system matrix sizes and the complexity6 of
the SVD calculation are given, which causes increased
computing times at higher resolutions [19].

Initially, for a new reconstruction process, a lowly
resolved grid is used to create an overview of the image in
a short time (lowly resolved image) (see Fig. 8: raw-image
→ grid 1). After that, the user has the option of choosing
arbitrary areas to be reconstructed with higher resolution
(see Fig. 8: gridding steps). While the first step only uses a
small-sized matrix for the entire image in the second step
a much smaller area is reconstructed using the resolution
and input datasets of a more highly resolved grid. This

6The complexity of a standard SVD implementation (alglib.net library)
is given by OSVD =min

�

nm 2, n 2m
�

.
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Table 1: Increasing the size of the system matrix results in a
massively growing complexity.

grid-size (n ×m ) size factor SVD complexity

(17 ·25)×1275 147.5 2.3 ·1011

(9 ·13)×351 11.0 4.8 ·106

(5 ·7)×105 1.0 1.3 ·105

process can be iterated several times. Furthermore, in
later steps it is possible to reconstruct specific separated
areas using the patch reconstruction method to enable
highly resolved images without increasing the size of the
system matrix making it more practical working on huge
datasets. Reconstructing only specific areas using the
proposed selected patch reconstruction (SPR) approach
results in a faster reconstruction process by reducing the
matrix size.

Figure 8: After a 2D Fourier transformation the spectrum con-
tains most of the signal information in the center. This compact
signal can be directly used for filling up the system matrix.

III. Results
All following images were reconstructed using a model-
based system matrix, which was generated in a virtual
TWMPI scanner by simulating the input dataset point-by-
point [4, 17]. The maximal size of a coronal 2D imaging
plane is 121× 241 points. This is the highest available
grid for the reconstruction representing a grid with a res-
olution in a real TWMPI system of 250µm [6, 9]. This
covers a FOV with a width of 30.25 mm and a length
of 60.25 mm. With a gradient strength of about 4 T/m
(z-direction) a resolution of 1-1.5 mm (z-direction) and
2-3 mm (x-, y-direction) is achievable using Resovist R©

(Bayer, Germany) [4, 10, 11, 18]. This results in an up to
four times oversampled system matrix in relation to the
resolution capability of the scanner, which is required
to suppress partial volume and localization errors in the
reconstructed image.

Firstly, every dataset is gridded on a 2D surface with
a size of 500 px× 500 px resulting in a total size of all in-
put datasets of about 45 GB. These data act as starting
basis for building the system matrices required in later
reconstruction steps. Depending on the desired resolu-

tion, the grid is chosen and the size of the raw-image is
adjusted. This follows the rule that the number of input-
data m (parameters required for the reconstruction) has
to be greater than the output-data n (number of pixels of
the reconstructed image) to get an overdetermined set
of equations.

The complexity of a completely filled matrix using
all parameters with a matrix size of 250000× 29161 is
2.1 · 1014. This would result in a computation time of
about 85 days on a current fast CPU (single thread) and
require about 500 GB RAM for the inversion. The system
matrix itself would have a final size of about 57 GB7.

III.I. Image-Based vs. Fourier-Scaled
Image-Based

The first results show the reconstructed images using the
image-based approach described in Sec. II.II in contrast
to the Fourier-scaled image-based method (Sec. II.III). In
Fig. 9 the identical measured raw-data of a EP5-sample
(see Fig. 8) is used with either reconstruction processes.

Figure 9: Comparison of the reconstruction methods: image-
based and Fourier-scaled image-based reconstruction of a mea-
sured EP5-sample. The image quality is comparable. A zoom
into a specific area compares the different scaling processes
showing a slight smoothing effect of the Fourier-scaled recon-
struction. The intensity of the difference image is scaled by a
factor of 5.

In both cases the reconstruction grid was 31×61 and
the size of the input images of 50×50 pixels (down scal-
ing factor of 10) corresponding to system matrices of
2500×1891. Both reconstructions have comparable im-
age quality and show a significant improvement in con-
trast over the DeR result shown in Fig. 2. The additional
zoom-in pictures (Fig. 9) show only small differences be-
tween both reconstructed images, which are the result

7These values are based on an extrapolation calculation on a matrix
with 10000×2000 entries, which requires about 10 minutes running
single threaded on a current fast CPU.

10.18416/ijmpi.2016.1611001 c© 2016 Infinite Science Publishing

http://dx.doi.org/10.18416/ijmpi.2016.1611001
http://dx.doi.org/10.18416/ijmpi.2016.1611001


International Journal on Magnetic Particle Imaging 7

of the different system matrices and their properties (see
Sec. B).

III.II. Selected Patch Reconstruction

Fig. 10 shows the reconstruction process using the se-
lected patch reconstruction (SPR) described in Sec. II.IV
on a simulated dataset of a grid of dots with different
distances (Fig. 10 (a)). In a first step, a reconstruction of
the full image is performed at a low resolution (grid size
of 16× 31 and image size of 30× 50 pixels) (Fig. 10 (b)).
The computation time for the entire process is 21.4 sec-
onds (17 seconds for the image preparation and 4.4 sec-
onds for the SVD). The reconstructed image provides an
overview of the entire FOV with the dots on top and in
the center being clearly separable. The dots in the lower
section cannot be resolved. Dots not matching the exact
location of grid points result in slight distortions in their
representation in the image.

Figure 10: Reconstruction process using the selected patch
reconstruction (SPR) demonstrated on a simulated dataset: (a)
Raw-image of a simulated dataset containing dots in different
patterns. (b) First reconstructed image with a low resolution
(grid size 16×31). (c) In the next step this image has to be co-
registered with the original raw-image to ensure the correct
pixel-picking for the following reconstruction steps. (d) The red
frame indicates the selected area, which will be reconstructed
with a higher resolution. (e) Reconstruction of the selected area
(patch grid size 29×31) at a higher resolution (2 times higher).
(f) The same area with a higher resolved grid (patch grid size
57×31) (4 times higher).

In the following, this reconstructed low resolution-
image has to be co-registered with the original raw-image
(Fig. 10 (c)). This registration step is necessary to ensure
covering the right area on the raw-image and selecting
the correct data (pixels) from the raw-image for the next
reconstruction step. This has to be done only once for
each new dataset and hardware setting to set the scal-
ing parameters. In the next step, the user can choose an
arbitrary area (red rectangle) from the raw-image to be
reconstructed at a higher resolution (Fig. 10 (d)). The
reconstruction process now works on the next higher
resolved grid with a computation time of about 20 sec-
onds for a matrix of 2035×464 representing the selected
area (patch grid size of 29× 16 and raw-image size of
55×37 pixels). The dots now are clearly distinguishable.
Fig. 10 (f) shows the same area with an even higher resolu-
tion, which has a computation time of about 85 seconds
for a matrix with 2035×1767 (patch grid size of 57×31
and raw-image size of 55×37 pixels). The apparent in-
crease of the signal intensity for points on the bottom
edge of the image is caused by signal from outside the
selected area, which is projected onto the border of the
image [20] (see Sec. C).

III.III. SPR on Real Data

Fig. 11 shows the SPR approach on a measured dataset.
The dataset was acquired with a high-resolution TWMPI
scanner described in [21]. This scanner has an FOV of
44 mm in length and 23 mm in diameter and works with
a gradient strength up to 7.5 T/m. Because of the identi-
cal hardware proportions, it is possible to use the same
model-based input dataset for the entire reconstruc-
tion process. The only difference is the grid resolution,
which is in the case of the smaller TWMPI scanner about
150µm.

The measured phantom contains six tubes filled with
LS-008 (Lodespin Labs, USA), which are orientated or-
thogonally to the scanning slice. The tubes have an inner
diameter of 1 mm and are spaced 0.5 mm, 1 mm and
1.5 mm. The first image shows the low-resolution recon-
struction of the sample, the second the reconstructed
area at a higher resolution. The third image shows the
same area at an even higher resolution and the forth the
highest possible resolution8. This image shows clearly
the separation of the tubes with a distance of 0.5 mm.
It also demonstrates the effect of projected signal from
outside the selected area, which results in bifurcation
artifacts [20]. The sample appears distorted in the fourth
image because the horizontal axis is scaled by a factor of
4 for better visibility. In the second row, the tubes are re-
constructed pairwise at the highest grid resolution. The
imaging artifacts of the highest resolved image in the up-

8The highest possible resolution depends on the accuracy of the model-
based datasets. It is reasonable to use the theoretical resolution of the
MPI scanner as a reference to avoid unnecessary amounts of data.
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per row are not present in this reconstruction because
the structure of interest is completely placed inside a sin-
gle patch. Only in the very corners projected signal from
outside is visible, which can be clearly separated from
samples.

Figure 11: Reconstruction process using patch reconstruc-
tion on a measured dataset (µTWMPI scanner with a gradient
strength of 7.5 T/m and a FOV of 44 mm in length and 23 mm
in diameter): Starting with a lowly resolved image (top left)
the following images show higher resolved images from the
selected areas (indicated by the green rectangles). Please note
the changed aspect ratio from the third to the fourth image.
The images (I-III) show the separately reconstructed areas on
the highest resolution (grid resolution 0.15 mm).

IV. Discussion

The proposed patch reconstruction method allows to
reconstruct specific areas of the image because of the
spatial localization of the PSF (Fig. 7). However, signal
of a sample, which is located just outside the selected
area, can create artifacts appearing as projections onto
the border of the reconstructed image (see Fig. 7 (f) and
Fig. 11). This effect can be suppressed by cropping the
image by one pixel on all sides [20].

Furthermore, there is another approach, which could
reduce the influence of the projected signals. This ap-
proach uses additional input datasets with a coarser
gridding outside the selected area for building the sys-
tem matrix. This increases the size of the system matrix

marginally, but can result in a more accurate reconstruc-
tion in the selected area, because signal from outside
the selected area is processed separately and will not
be projected onto the borders. The selection of further
datasets outside the selected area can be implemented
in the form of a dynamic selected patch reconstruction
(dSPR) using a dynamic multigrid approach (e.g. Voronoi
gridding [22]). However, this approach raises some new
challenges such as a suitable implementation of a multi-
grid algorithm allowing to build a grid with a variable
granulation or a robust algorithm for picking the pixels
from the raw-images. Working on the SPR is less complex,
because the selected area yields the pixel dimensions on
the raw-image, but in the case of dSPR this selection pro-
cess is not straight-forward because of the variable grid
size. This could be avoided by setting the size of the pix-
els to maximum value, but at the cost of a growing system
matrix and long computation times.

The proposed reconstruction methods as well as the
different approaches for filling up the system matrix are
in a very early state of investigation. Therefore, the influ-
ence of the different system matrices on reconstructed
images and desired properties of (TW)MPI systems have
to be further examined in more detail.

V. Conclusion

This paper presents a flexible reconstruction process
based on the system matrix approach, which offers a
much better image quality in contrast to a direct deconvo-
lution reconstruction method using a 2D deconvolution.
This approach overcomes the geometry distortions in
TWMPI caused by temporal and spatial inhomogeneities
of the magnetic field gradient over the FOV. It also decou-
ples the hardware and its settings from the following re-
construction process by using a gridding step to generate
’normalized’ raw-images. This results in high flexibility
for the use of identical model-based datasets for differ-
ent TWMPI scanner sizes (e.g. TWMPI vs. µTWMPI) and
for settings (e.g. arbitrary excitation frequencies, sam-
pling rate and trigger point). This makes the method very
versatile.

Furthermore, several ways of filling the system matrix
are introduced. Instead of Fourier-based data image-
based data are used for this step, also motivating the se-
lection patch reconstruction (SPR). The SPR offers the ca-
pability of working on very large datasets. It reduces the
computation time for highly resolved images by calcu-
lating only arbitrarily selected areas of interest reducing
the data for the reconstruction. This makes this method
practicable for reconstruction of large datasets to obtain
higher resolved images in a shorter time.
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A. TWMPI System Function
Patterns

In Fig. A.1 an overview of the system functions of a Trav-
eling Wave MPI scanner is given. For building a system
matrix the real and imaginary parts have to be taken
separately. The reason is pure encoding by phase in the
z-direction (vertical in the 2D image) [9], which cause
the absolute values of the pattern not to exhibit any ver-
tical structures for increasing i2. Only in the real and
imaginary value pattern this structure can be seen.

Figure A.1: An overview of the first system functions of a
TWMPI scanner. The absolute, real, imaginary and phase value
pattern are shown.

In Fig. A.2 a more detailed view on the effect of
Fourier-leakage is shown. As an example the values
for two pairs of system functions are given: the calcu-
lated frequency fi1,i2

and the corresponding index Ii1,i2

(rounded value and exact value) based on the real excita-
tion frequencies of the TWMPI scanner ( f1 = 919 Hz and
f2 = 16823 Hz).

The index can be calculated using the following for-
mula:

Ii1,i2
= ki1,i2

/SR · ldata (A.1)

whereby ki1,i2
means the frequency of the harmonic (see

Sec. II.I), SR is the sampling rate and ldata the length of

the dataset (in the case of SR = 100 MS/s and an acquisi-
tion time of 20 ms the data length is ldata = 1 ·106).

In the case of pair (II) both index values are close
enough to an integer value, which is unproblematic. In
the case of pair (I) one of the indices lies between two
integer values. Due to rounding issues, this can result
in picking the false pattern, which has a major impact
because of the almost inverted patterns for adjacent in-
dices.

Figure A.2: (a) An overview of the system functions (real part).
The red rectangles indicate the pairs, which show an unex-
pected behavior. (b) Two representing pairs are picked to show
demonstrate the Fourier-leakage effect. Given are the frequen-
cies and the corresponding indices (rounded and exact values)
for each pattern. All images are normalized and the exact in-
tensity level (yellow) is given below the pattern.

B. Comparison of Information
Loss during Image Scaling

In Fig. B.1 a descriptive example is shown to demonstrate
information loss during the proposed scaling processes.
While direct scaling loses the exact position of the two
sample points, this information can be reconstructed by
zero-filling using the Fourier-scaled process.

It seems to be useful to use the Fourier-scaling
method for filling the system matrix, because there is
higher quality information available. A look at Fig. B.2
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Figure B.1: Example of a two-point phantom and the influ-
ence of the scaling process. While the exact position is lost using
the direct scaling, it can be reconstructed using the Fourier-
scaling and zero-filling.

shows the eigenvalues of a system matrix build with the
direct-scaled data and the Fourier-scaled data. These val-
ues are calculated during a SVD. The eigenvalues show
different distributions: in the case of direct-scaled all
eigenvalues are within three orders of magnitude, which
yields a good reconstruction capability of ’unknown’ pat-
tern.

In contrast, the eigenvalues of Fourier-scaled are
much higher at the beginning, but decrease by more
than eight orders of magnitude at higher indices. This
results in a more robust reconstruction in the presence
of noise using truncated SVD.

Figure B.2: The graph shows the eigenvalues of the system
matrices build with the direct-scaled data and with the Fourier-
scaled data.

C. Effect of Patch Selection on
Signal Intensity

In the following a more detailed description of the ef-
fect of patch selection on the signal intensity in the final
reconstructed image is given.

In Fig. C.1 (a) the patch selection and the correspond-
ing reconstructed images are shown. In this case, the
sample points lie next to the border of the system matrix

Figure C.1: Different patch selections and the influence on
the reconstructed images depending on the grid size: (a) The
patch area contains sample points, which lie next to the border
of the system matrix. (b) The selected patch contains an area
in the center, with some of the sample points lying next to the
border.

grid. Thus, the selected patch is also set up to the border.
Depending on the grid size, the reconstruction process
calculated the intensities of the point samples differently.
The effect stems from the influence of signal, which is
incorrectly reconstructed for pixels outside the border.
Because of the limited grid area, this signal is projected
onto the adjacent pixel inside the selected patch, which
results in an intensity increase. In Fig. C.1 (b) the same ef-
fect is shown with a selected patch area inside the matrix
grid, but also cutting through an area of sample points.
Again, the samples next to the border show increased in-
tensity, which gets higher with a finer grid. This happens
because signal of more pixels is reconstructed, which are
lying outside the patch area and the respective intensi-
ties are projected onto the pixel next to the border inside
the patching area [16].
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