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Abstract
Magnetic Particle Imaging (MPI) is a tracer based medical imaging modality with great potential due to its high sensi-
tivity, high spatial and temporal resolution, and its ability to quantify the tracer concentration. Image reconstruction
in MPI is an ill-posed problem, which can be addressed by regularization methods that lead to a reconstruction bias,
which is apparent in a systematic mismatch between true and reconstructed tracer distribution. This is expressed
in a background signal, a mismatch of the spatial support of the tracer distribution and a mismatch of its values. In
this work, MPI reconstruction bias and its impact are investigated and a recently proposed debiasing method with
significant bias reduction capabilities is adopted.

I. Introduction

Magnetic Particle Imaging (MPI) is a tracer-based tomo-
graphic imaging technique able to recover the spatial dis-
tribution of the tracer [1]. It has been shown to achieve
good spatial (< 1 mm) [2] and excellent temporal reso-
lution (e.g., as much as 4 mL could be imaged at a rate
of 46 volumes per second) [3] and like MRI, does not in-
volve any ionizing radiation, but instead uses magnetic
fields to perform its measurement. In the setups MPI
is currently used, the relation between tracer concen-
tration and MPI signal intensity is linear and image re-
construction is an ill-posed inverse problem [4–6]. In
practice, this can lead to large variances in the recon-
structed images stemming from measurement noise. A
well established method to reduce the impact of noise
is regularization [7, 8], which improves the robustness
of the reconstruction algorithm by trading off variance

and bias in such a way that the biased regularized re-
construction outperforms the unbiased one. Bias here
refers to a systematic deviation of the reconstruction re-
sult compared to the true data. This can for instance be
an over- or under-estimation of the tracer concentration
or certain artifact pattern in the reconstructed image. In
MPI, Tikhonov regularization was the first type of regu-
larization to successfully improve imaging quality [4] and
it is still commonly in use. More recent additions were
total variation (TV), `1 regularization [9] and structural a
priori information based regularization [10].

One of the most interesting properties of MPI is that
it provides quantitative information about the tracer dis-
tribution. This leads to a wide range of potential medi-
cal applications, such as the quantification of vascular
stenosis [11, 12], perfusion imaging [13–15], assessment
of aneurysm hemodynamics [16], blood flow measure-
ments [17], quantification of stem cells [18], and cerebral
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blood volume measurements [19]. It is also essential
for multi-contrast MPI applications [20], such as tem-
perature mapping [21], viscosity quantification [22] and
nanoparticle core size discrimination [23]. Reconstruc-
tion bias can potentially lead to a systematic error in
such applications, as e.g. recognized by Vallma et al. [12]
for the quantification of vascular stenosis. Thus, bias in
general can be problematic for applications requiring
an accurate quantification of the particle concentration.
In other imaging modalities such as PET/CT this issue
has already been addressed [24]. MPI reconstruction ar-
tifacts were first investigated in [25]. However, there has
not yet been a systematic investigation of bias in MPI.

A first aim of this work is to investigate the image re-
construction bias for MPI and the potential impact on
its quantifiability for TV and `1 regularization. There
are two straight forward approaches to reduce the im-
pact of bias. One can use a calibration based approach
for quantification, where the bias is taken into account
by using reference measurements - An approach used,
for instance, for viscosity quantification [22]. A more
generic approach can be the use of regularization meth-
ods, which introduce less bias to begin with. In this work,
we take the latter and adopt a recently introduced two-
step debiasing method [26] because it is more general
and potentially able to reduce bias for a wide variety of
applications. We compare regular TV and `1 regulariza-
tion with their debiased counterparts using simulated
data and assess the potential impact on quantitative ap-
plications using an examplary experimental application.

II. Problem statement
The basic principle of MPI is based on the nonlinear mag-
netization response of magnetic nanoparticles [1, 2, 27].
A static selection field saturates all particles except for
those in the vicinity of the field-free region. A dynamic
drive field is applied to rapidly move this region within
the field of view of the MPI scanner. Inductive receive
coils pick up changes of the nanoparticle magnetization.
The relation between the particle distribution and the
measured signal can be described by a linear system of
equations

S c = u , (1)

where u ∈CM are the Fourier coefficients of the induced
signal, S ∈CM x N is the system matrix, and c ∈RN

+ is the
concentration vector. The latter holds N concentration
values describing the spatial distribution of the magnetic
nanoparticles. More details on the formulation of the
MPI image reconstruction problem can be found in [28].

MPI aims to obtain the unknown concentration vec-
tor c , given a measured signal u , which is typically ob-
tained by minimizing the Tikhonov functional

cα ∈ arg min
c

1

2
‖S c −u‖2

2+αJ (c ), (2)

with regularization functional J and regularization pa-
rameter α, which controls the effect of the regularization
functional.

Regularization methods in general suffer from bias,
which can be divided into two parts, model bias and
method bias [26]. The former is due to the choice of
the regularization method and is unavoidable. The lat-
ter is a systematic error due to the weight on the regu-
larization and can be corrected. The most commonly
used regularization functional in MPI is the classical
Tikhonov regularization, i.e., the `2 norm. The first row
of Figure 1 shows the reconstruction of two different
one-dimensional tracer distributions with a Tikhonov
regularization functional as well as the original tracer
distributions which are generated by an MPI system ma-
trix based forward simulation. Signals in the first row are
reconstructed using Kaczmarz algorithm. Both signals
are over-smoothed, blurred and the first one suffers from
overshooting on the edges. Those structural artifacts are
considered to be the model bias of Tikhonov regulariza-
tion. Since this part of bias cannot be avoided, other
regularization functionals were considered, such as, TV
and `1 [9]. The former is chosen for the steps signal as it
preserves the edges [29], while the latter has the advan-
tage of enforcing sparsity [30], which makes it a suitable
choice for the sparse signal. The second row of Figure 1
displays the MPI simulated one-dimensional signals re-
constructed with the first order primal dual algorithm
using TV and `1 regularization functionals, respectively.
It is clear that the structure of the signals is recovered bet-
ter but they suffer from under-estimation, which can be
seen as a drop in height of the steps in the first signal and
as a shrinkage of the peak values in the second one. This
under-estimation is related to the method bias, which
we aim to correct using the two-step debiasing method.

III. Theory

III.I. The two-step debiasing method

The main idea of the two-step debiasing method [26]
for variational regularization is based on determining
the support of the true solution by solving the standard
variational problem in a first step. Then, the second debi-
asing step minimizes the data fidelity term on the same
support with a zero Bregman distance [31] constraint.
The definition of the Bregman distance depends on the
subgradient obtained from the optimality condition of
the variational problem. It is shown in [26] that the two-
step debiasing method is well-defined, applicable for a
wide range of regularization functionals and optimally
reduces the bias.

The first step of the two-step debiasing method is to
consider the solution of the variational problem (2) and
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Figure 1: Tikhonov (left and right top), TV (left bottom) and `1 (right bottom) reconstructions (black, dashed) of one-dimensional
signals (dark gray, solid) show model bias as over smoothing (Tikhonov) and method bias as signal reduction (TV and `1).

compute its first-order optimality condition

S ∗(S cα−u ) +αpα = 0, pα ∈ ∂ J (cα) , (3)

where S ∗ is the adjoint of the operator S , and pα is the
subgradient, which carries over information about cα to
the second step. Proceeding to the second debiasing step,
it minimizes the data fidelity term over the set of all c
sharing the support of cα. This sharing support condition
can be reformulated as a vanishing Bregman distance
between c and cα

ĉα ∈ arg min
c

1

2
‖S c −u‖2

2 s.t. D pα
J (c , cα) = 0 , (4)

with the Bregman distance [8] defined as

D p
J (u , v ) = J (u )− J (v )−〈p , u − v 〉, p ∈ ∂ J (v ).

We assume J to be absolutely one-homogeneous, i.e.,
J (λc ) = |λ|J (c ) for all λ ∈R. Then, the Bregman distance
reduces to

D p
J (u , v ) = J (u )−〈p , u〉, p ∈ ∂ J (v ).

In summary, the steps of the two-step debiasing method
are given by:

1. Compute the (biased) solution cα of (2) with opti-
mality condition (3).

2. Compute the (debiased) solution ĉα as the mini-
mizer of (4).

III.II. Numerical implementation using
the first-order primal dual
algorithm

In the previous section, we discussed the two-step debi-
asing method to find a variationally regularized recon-
struction of the true signal with reduced method bias.
The method requires solving the two minimization prob-
lems (2) and (4), which can be reformulated as

min
c

1

2
‖S c −u‖2

2+αJ (c ) , (5)

min
c

1

2
‖S c −u‖2

2+γD pα
J (c , cα). (6)

For solving those minimization problems, we use the
first-order primal dual algorithm [32, 33] due to its sim-
plicity and ability to update both the primal and dual
variables in each iteration. In the following, we derive
the algorithm for a more general setting and later map
it to the specific optimization function in section III.III.
Starting point is the general form of the minimization
problems considered in this work, i.e., primal problems
of the form

min
c∈X
{F (Ac ) +H (c )} , (7)

where A : X → Y is a continuous linear operator between
Hilbert spaces and F : Y →R∞ :=R∪ {+∞} as well as
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H : Y →R∞ are convex, proper, lower semicontinuous
(l.s.c) functions. In our setting, Y is a product space of
Hilbert spaces, i.e., Y = Y1×Y2, and we write y = (y1, y2)
with yi ∈ Yi for i = 1,2. Consequently, we have (Ac )i =
Ai c with Ai : X → Yi for i = 1,2. Moreover, we assume
that F is separable, i.e., F (y ) = F1(y1) + F2(y2).

Instead of solving the primal problem (7), one uses
the duality principle to derive the dual or the saddle point
problem with help of the Fenchel conjugate [34]. The
Fenchel conjugate of a function G : Y →R∞ is given by
G ∗ : Y →R∪{−∞,∞},

G ∗(y ) :=max
z∈Y
{〈z , y 〉−G (z )} . (8)

The dual and the primal-dual formulations of (7) are thus
given by

max
y ∈Y
{− (H ∗(−A∗1 y1−A∗2 y2) + F ∗1 (y1) + F ∗2 (y2))} , (9)

min
c∈X

max
y ∈Y
{〈A1c , y1〉+ 〈A2c , y2〉+H (c )

− F ∗1 (y1)− F ∗2 (y2)} , (10)

where F ∗1 , F ∗2 , and H ∗ are the Fenchel conjugates of F1, F2,
and H . Note that we used the separability of F leading
to F ∗(y ) = F ∗1 (y1) + F ∗2 (y2). A saddle point (ĉ , ŷ1, ŷ2) of
the saddle point problem (10) satisfies the optimality
condition





0
0
0



 ∈




−A1 ĉ + ∂ F ∗1 ŷ1

−A2 ĉ + ∂ F ∗2 ŷ2

A∗1 ŷ1+A∗2 ŷ2+ ∂H (ĉ )



 ,

where ∂ F ∗1 , ∂ F ∗2 , and ∂H are the subdifferentials of the
convex functions F ∗1 , F ∗2 , and H .

From that we obtain the first order primal dual algo-
rithm iterations with extrapolation in the primal variable
summarized in Algorithm 1.

Algorithm 1 First-Order Primal-Dual Algorithm

Input: u , F1, F2, H , A1, A2, and α> 0
Initialization: c 0 = c̄ 0 = 0, y 0

1 = y 0
2 = 0, σ,τ > 0, such

thatστL 2 < 1, where L = ‖ A1‖
while not converged do

y n+1
1 = (I +σ∂ F ∗1 )

−1(y n
1 +σA1 c̄ n )

y n+1
2 = (I +σ∂ F ∗2 )

−1(y n
2 +σA2 c̄ n )

c n+1 = (I +τ∂H )−1(c n −τ(A∗1 y n+1
1 +A∗2 y n+1

2 ))

c̄ n+1 = 2c n+1− c n

end while
return cα = c n+1

Stopping Criterion

Concerning the choice of the stopping criterion, we
consider the primal-dual gap of the saddle point problem.

The primal-dual gap is simply defined as the difference
between the primal and the dual problems for the current
values of variables [33]. The iterations of the primal-dual
algorithm converge to the saddle point as the primal-
dual gap approaches zero. Thus, the algorithm converges
if the primal-dual gap is less than a chosen value ε> 0.

III.III. TV and `1 Regularization
For the TV-type regularization we set the regularization
functional to J (c ) = ‖Γ c ‖1, where Γ is the gradient opera-
tor implementing the finite differences. The numerical
implementation of the minimization problems requires
the system matrix S and the measurement vector u to
be real. Given that c ∈ RN is real, we can reformulate
the complex system S c = u into a real system S̃ c = ũ by
simple stacking of the real and imaginary parts of S and
u , respectively. Then, we get a real-valued system matrix
S̃ ∈R2M×N , ũ ∈R2M , and c ∈RN . For simplicity, we keep
on using the symbols S , u , and c to represent the system
matrix, measurement vector, and the concentration vec-
tor, respectively, but notice that from here on they will
be in the real space. Generally, Γ ∈ RD×N represents a
discrete linear gradient operator and S ∈R2M×N denotes
a linear forward operator. Thus, we get the following
discrete optimization problems to solve:

cα ∈ arg min
c

1

2
‖S c −u‖2

2
︸ ︷︷ ︸

F1(S c )

+α‖Γ c ‖1
︸ ︷︷ ︸

αF2(Γ c )

+I+(c )
︸︷︷︸

H (c )

, (11)

ĉα ∈ arg min
c

1

2
‖S c −u‖2

2
︸ ︷︷ ︸

F1(S c )

+γ‖Γ c ‖1
︸ ︷︷ ︸

γF2(Γ c )

−γ〈pα, c 〉+ I+(c )
︸ ︷︷ ︸

H (c )

, (12)

where I+(c ) is equal to 0 if ci j ≥ 0 for all i , j , and
equal to∞ otherwise. I+(c ) is used to incorporate the
non-negativity constraint on c .

From the previous section, we noticed that the first
order primal-dual algorithm (Algorithm 1) requires cal-
culating the proximal mappings of the convex conjugate
of the data fidelity term and the regularization functional.
Recall that the proximal mapping [35] for a real-valued
convex function f is defined as

(I +λ∂ f )−1(ξ) := arg min
v

�‖v −ξ‖2
2

2λ
+ f (v )

�

. (13)

Hence, the convex conjugate of F1 and βF2 and the prox-
imity operators of F ∗1 , (βF2)∗, and H are given by

F ∗1 (y1) =
1

2
‖y1‖2

2+ 〈y1, u〉 ,
(βF2)

∗(y2) = IB∞β (y2) ,

(I +σ∂ F ∗1 )
−1(ξ) =

ξ−σu

1+σ
,

(I +σ∂ (βF2)
∗)−1(ξ) =

�

βξi

max(β , |ξi |)
�N

i=1

,

(I +τ∂H )−1(ξ) =max(0,ξ+τγpα) ,
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Figure 2: The TV (left) and `1 (right) simulation phantoms are
shown.

where IB∞β is the indicator function on the ball B∞β with

β a given scalar and N is the length of the vector ξ. H (c )
in the minimization problem (11) has γ equal to 0, which
means that the proximity operator for this step would be
a positive projection. For detailed information how to
compute these convex conjugates and proximity opera-
tor, we refer to [36].

Applying the primal dual algorithm (Algorithm 1) to
the minimization problems (11) and (12), the iterative
algorithm produces a primal-dual sequence c n that con-
verges to the solution of the standard variational problem
cα (11), which is used in the definition of the unique sub-
gradient pα:

pα =
1

α
S ∗(u −S cα).

Similarly, the second step iterations result in a sequence
ĉ n that converges to the debiased solution ĉα.

Similar to the TV regularization case, we apply the
same first-order primal-dual algorithm iterations for the
`1 regularization optimization problem by omitting the
gradient operator Γ .

IV. Materials and methods

IV.I. Simulation setup

For numerical analysis of the proposed bias reduction
method, first, a 2D simulation study was designed. 2D
phantoms were used for analysis of TV and `1 regu-
larization, respectively as shown in Figure 2. The TV-
phantom consists of large, medium and small circles
with homogeneous perimag tracer concentrations of
5 mgFe mL−1, 3.5 mgFe mL−1 and 2.5 mgFe mL−1 and radii
of 5 mm, 4 mm and 3 mm, respectively. The `1-phantom
consists of nine equally distanced small dots with a
concentration of 5 mgFe mL−1 and a quadratic base of
2× 2 mm each. The values of the concentrations were
normalized to 1 through our simulation as we notice in
Figure 2.

Our simulations were based on a measured 2D sys-
tem matrix obtained with a preclinical MPI system
(Bruker, Ettlingen, Germany). The drive field amplitudes
were 12 mTµ0

−1 in x - and y -directions and the gradi-
ent strength was Gx = Gy = −1 T m−1µ0

−1 and Gz =
2 T m−1µ0

−1, which results in an effective field of view
(FOV) of 24×24 mm. The system matrix was measured
on a 30×30 grid on a slightly larger area of 30×30 mm.
The delta sample had a size of 1×1×1 mm and was filled
with undiluted perimag (micromod Partikeltechnologie
GmbH, Rostock, Germany) with an iron concentration
of 5 mgFe mL−1. In order to reduce background noise in
the system matrix, frequency components below 80 kHz
were removed [37] yielding a total of 948 frequency com-
ponents remaining. Forward simulation used the system
matrix upsampled using bicubic interpolation by a fac-
tor of two in each dimension to avoid committing an
inverse crime, whereas reconstructions used the unmod-
ified system matrix. The simulation produces a Fourier
domain measurement vector u , which was also filtered
by excluding the same frequency components excluded
from the system matrix.

The TV-phantom simulation study was run with dif-
ferent noise levels added to the measurement vector u as
described in [38] in order to analyze the MPI reconstruc-
tion bias effect and its dependence on the noise levels.
The noise vector we used is extracted from the system
matrix and then upscaled by 5 different values before
adding it to the measurement vector.

IV.II. Experimental setup

An additional experimental study was carried out using
the preclinical MPI system. The 2D simulation phan-
toms were used as blueprints to construct 3D measure-
ment phantoms of 4 mm height as shown in Figure 3.
All phantoms were filled with perimag using the same
iron concentrations as in the simulation study. The 3D
MPI measurements were performed using drive fields of
12 mTµ0

−1 amplitude in all 3 directions and a gradient
strength of Gx = Gy = −1 mTµ0

−1 and Gz = 2 mTµ0
−1

resulting in an effective FOV of 24× 24× 12 mm. In to-
tal the scanner measured 2000 successive frames that
were averaged prior to reconstruction. The correspond-
ing system matrix was taken from the Open MPI Data
datasets [39, 40]. It was acquired on a 37× 37× 37 grid
on a FOV of 37×37×18.5 mm using a 2×2×1 mm delta
sample filled with undiluted perimag of concentration
5.585 mgFe mL−1.

IV.III. Image reconstruction

The reconstruction algorithm presented earlier was im-
plemented using the Julia programming language [41].
The algorithm was used to solve the regular reconstruc-
tion problem in equation (2) and the corresponding two-
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TV-phantom `1-phantom

Figure 3: The TV (left) and `1 (right) measurement phantoms
are shown.

step debiasing problem in equation (4) for TV and `1 regu-
larization functionals. As input parameters, we used step
sizesσ andτ equal to 1. Settingσ andτ to 1 was possible
due to scaling the system matrix S and measurement vec-
tor u with respect to the inverse of the Frobenius norm of
the system matrix 1

‖S‖F
. The stopping criterion parameter

εwas set to 1 ·10−7 for the simulated data reconstruction
and to 1·10−10 for the experimental data. This choice of ε
resulted in around 500 primal dual algorithm iterations.
For the simulated data, regularization parametersαwere
chosen to be in the range of 1 ·10−4 to 1 ·100 for TV, `1 and
the reference Tikhonov (`2) regularization. For the exper-
imental data, regularization parameters αwere chosen
to be in the range of 1 · 10−6 to 1 · 10−3. The debiasing
parameters γwere selected to be in the range of 1 ·10−5

to 1 · 102 for both the simulated and the experimental
data. Lastly, as a reference, the experimental data was
reconstructed using standard `2 Tikhonov regularization,
which was handled using the Kaczmarz algorithm im-
plementation from the MPIReco.jl package [42]with 10
iterations for the TV-phantom and 100 iterations for the
`1-phantom.

IV.IV. Bias analysis - simulation setup

Analysis of the bias was done by evaluation of the Nor-
malized root-mean-square deviation (NRMSD) for the
simulated data reconstructions, where the phantom is
available as ground truth. NRMSD indicates the abso-
lute fit of the reconstructed images to the real phantom.
Lower values of NRMSD indicate better fit. For a more
fine grained analysis of where bias occurs, we also com-
puted pixel-wise difference maps between reconstruc-
tions and the phantom.

Whenever an optimal regularization parameter
needed to be chosen in our simulation setup, we auto-
matically tuned the regularization parameters α by min-
imizing the NRMSD and thus eliminating the need for
manual selection at this point. The same was also done
for choosing the optimal debiasing parameter γ.

IV.V. Bias analysis - experimental setup

In order to analyze the potential impact of bias onto
quantitative MPI applications, we used an exemplary ap-
plication, where we estimated the iron mass within the
central slice (19 of 37) for each substructure of the phan-
tom, so each circle within the TV-phantom and each dot
within the `1-phantom. This was done by first multiply-
ing each concentration value within slice 19 by the voxel
volume of 0.5 µL yielding the per voxel iron mass. Iron
masses were then obtained by summing up these per
voxel iron masses for each substructure. Substructure
selection was done by circular masks centered around
the phantom center position with radii 5.5 mm, 4.5 mm,
3.5 mm and 2.5 mm for the large circle, medium circle,
small circle, and `1-dot, respectively. These estimations
varied quite significantly depending on the regulariza-
tion parameter, so we took the middle-sized circle, re-
spectively the central dot as a reference for calibration.
Based on this reference, the regularization parameter
with the least deviation between true and estimated iron
mass was chosen. The reference true iron masses for
the small, medium, and large circles of the TV-phantom
are 196 µg, 88 µg and 35 µg and 10 µg for each of the `1-
phantom dots.

V. Results

V.I. Reconstruction bias in MPI

Regular reconstruction results of the simulation data us-
ing the TV regularization with automatically tuned regu-
larization parameters can be seen in the first row of Fig-
ure 4 for different noise levels, together with their discrep-
ancy maps in the second row. When the reconstructed
images are analyzed, one can see that the general struc-
ture of the phantom with its three components is recov-
ered for most noise levels. Some noise artifacts in the
corners of the high noise reconstructions are observed.
Noise induced degradation of the recovery is most promi-
nent in the phantoms smallest component, which also
happens to have the lowest signal strength. Taking the
color mapping into account, we see a systematic under-
estimation of the signal strength. Closer inspection of
the discrepancy maps confirms our earlier observations
about the recovery of the general structure of the phan-
tom, as indicated by the high similarity circular regions
in the center of the discrepancy maps. However, in ad-
dition to the under-estimation of the signal strength in
the phantom’s area, they also show an over-estimation in
most parts of the remaining image, where there should
be no signal. This is caused by low level image noise,
which is not or only barely visible in the reconstructed
images.

Regularization bias in general is a systematic error
and its effect is quantified for TV regularization in Fig-
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Figure 4: TV regularized reconstruction results of the TV-phantom and the corresponding discrepancy maps for different noise
levels using the optimal α value are shown in the two upper rows, respectively. Debiased TV regularized reconstruction results of
the TV-phantom and the corresponding discrepancy maps for different noise levels using the optimal α value are shown in the
two lower rows, respectively. The blue/red colorbar defines over-estimation in blue and under-estimation in red.

ure 5 (left), where the NRMSD values are plotted as func-
tions of α for each noise level. The minimal NRMSD
value increases with increasing the noise, which indi-
cates a bias increase in the reconstructions. Further-
more, we observe a slight shift of the minimum position
towards largerα values with increasing noise, which does
also occur when choosing the optimal parameter man-
ually based on the visual impression of the images. As
far as the visual quality of the reconstructed image is
concerned, the regularization parameter minimizing the
NRMSD seems to be a good choice for the optimal regu-
larization parameter.

V.II. Bias reduction

Figure 4 shows the debiased reconstruction results of the
simulated data and the corresponding discrepancy maps
using the automatically tuned α values for each noise
level and a fixed γ value of 0.015 in its third and fourth
rows, respectively. Visually, the reconstructed images
are quite similar to the ones in the first row. In compar-
ison, the signal in the phantom region is more homo-
geneous for low noise levels and the noise artifacts in
some corners are more pronounced for high noise levels.
Structure wise, as expected, there are no notable differ-
ences. However, we observe that the intensity values are
in much better agreement with the phantom. Analyzing
the discrepancy maps, we see a large similarity in the
image background regions caused by absence of most of
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Figure 5: The NRMSD is shown for the regular (left) and the debiased (right) TV reconstructions of the TV-phantom for different
noise levels against regularization parameters ranging from 10 ·10−4 to 1 ·100.

the low strength background noise we observed for the
regular reconstruction shown in the first row.

Figure 5 (right) plots the NRMSD values for the debi-
ased reconstruction results for different noise levels and
the fixed γ value. In comparison with Figure 5 (left), a de-
crease in the NRMSD values can be observed. The figure
also shows a change in the optimal α values, i.e the opti-
mal α values for debiasing are different from the ones for
the biased case. One can also observe the effect of under-
and over-regularization on both regular and debaised
reconstructions from Figure 5. Under-regularization af-
fects debiased reconstructions more than regular ones as
the debiased reconstructions NRMSD values increase sig-
nificantly for small α values. Over-regularization has the
opposite behaviour, it offers higher NRMSD values for
the regular reconstructions than the debiased for large α
values.

V.III. Choice of regularization and
debiasing parameter

A detailed analysis on the choice of the regularization pa-
rameterα and the debiasing parameter γ is introduced in
this section. Figure 6 shows the NRMSD for the debiased
TV reconstructions of the TV-phantom for 50 α values
ranging from 1·10−4 to 1·100 and 50γ values ranging from
1·10−5 to 1·102. The white dashed ellipse on the heatmap
shows a region of α and γ values that provide nearly op-
timal reconstructions, i.e. with minimal NRMSD values.
The ellipse width is longer than its height, which indi-
cates that there is a large range of α values for which the
reconstruction quality is close to optimal provided γ is
within the same magnitude as its optimal value. For α

values smaller than the optimal, the higher the debias-
ing parameter we use, the worse the reconstructions get.
While for α values larger than the optimal, it is better
to choose a γ value close to the optimal one or slightly
smaller.

5.4 ·10−4 3.6 ·10−3 2.3 ·10−2 1.5 ·10−1 1.0

1.9 ·10−4

5 ·10−3

1.4 ·10−1

3.7
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α

γ
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0.1

0.15

0.2

0.25

Figure 6: The NRMSD is shown for the debiased TV reconstruc-
tions of the TV-phantom for 50 α values ranging from 1 ·10−4

to 1 ·100 and 50 γ values ranging from 1 ·10−5 to 1 ·102, with a
white dashed ellipse surrounding the region of α and γ values
reconstructing images with minimal NRMSD values.

Note that the observations made so far can also be
made for the `1-phantom but are not shown here for con-
ciseness. To this end, we consider the reconstructions
of the TV-phantom and the `1-phantom with the corre-
sponding reconstruction method and noise scaling value
of 100. Figure 7 shows the regular and the debiased re-
construction results for the TV- and `1- phantoms for 3
different α values, which we refer to as low, medium and
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high, and a fixed γ value of 0.015.
Without debiasing, one can observe that the structure

of both phantoms is recovered as long as the regulariza-
tion parameter is not too large. For low α values, the re-
construction is unable to produce homogeneous regions
in the TV case and sharp edges in both. For medium
α values, the overall visual quality of the images is best,
but still a significant under-estimation of the image sig-
nal can be observed. For the `1-phantom we observe
this under-estimation for all regularization parameters,
whereas we observe a shift from over-estimation at low
α values to under-estimation at large α values for the
TV-phantom.

The debiased reconstructions for the TV- and `1-
phantoms show that for low α values debiasing has a
negative impact on the quality of the images. This is
especially prominent in the case of TV regularization,
where a strong over-estimation of the image signal and
noise amplification occur. For α values greater than the
optimal ones, the TV and `1 debiased solutions still of-
fer a significant improvement in recovering the intensi-
ties but are still affected by the over-regularization from
the first step, i.e., they do not recover parts of the phan-
tom that are lost in the biased reconstructions. Lastly,
for the medium α value, optimal debiased solutions are
obtained with nearly perfect intensity recovery and an
overall improvement in the structure of both phantoms.

V.IV. Bias - iron mass estimation

Figure 8 shows reconstructions for the experimental data
using the two-step debiasing method for the experimen-
tal TV- and `1-phantoms. Regular and debiased recon-
structions are shown for three regularization parameters
each, i.e., 1

5αopt, αopt, and 5αopt. Tikhonov regularization
is presented forαopt only, which is the optimal regulariza-
tion parameter that gives the best iron mass estimation
for the medium circle and central dot of the TV- and
`1-phantom for each reconstruction, respectively. For
Tikhonov regularization αopt was 1 ·10−6 for TV-phantom
and 1 ·10−5 for `1-phantom. For TV- and `1-phantoms,
αopt was equal to 5 ·10−5 and 2.5 ·10−5, respectively. The
debiasing parameter γwas set to 1.7·10−4 for both the TV-
and `1-phantoms. Similar visual observations regarding
over- and under-regularization can be made as for the
simulated data, except that bias is more prominent for
the regular reconstruction of the experimental data. We
notice that regular reconstructed images for both phan-
toms suffer from a severe drop in intensities, circles of
the TV phantom are distorted and the dots of the second
phantom are blurred. We also notice a similar behav-
ior for the reconstructions with different α values (low,
medium, and large) as in the simulated data reconstruc-
tions. Thus, with regular reconstruction one either gets a
noisier reconstruction with smaller bias or less noise with
larger bias. However, one sees in the second and fourth

iron mass [µg]
TV phantom `1 phantom
L M S

True iron mass 196 88 35 10
Tikhonov 133 62 25 0.158 - 0.278
Regular 101 44 14 0.07 - 0.18

Debiased 171 89 34 5.2 - 9.5

Table 1: This table shows the estimated iron masses for each
substructure of TV-phantom and a range for all substructures
of the `1-phantom. Reconstructions were made using regular,
debiased, and Tikhonov regularization with their optimal α
values. For reference the true iron masses are shown in the first
row.

columns of Figure 8 that the debiased reconstructions
with the optimal α values have the best overall structure
and intensities.

The results of the iron mass estimation within the
central slice for each substructure of the phantom are
summarized in Table 1. The bias introduced by the dif-
ferent regularization techniques leads to a systematic
error in the estimation of the iron mass within these sub-
structures. This error is largest for the regular TV and
`1 regularization and less severe for the Tikhonov reg-
ularization. In both cases the true iron mass is under-
estimated. This under-estimation is most prominent
for the `1 regularization, where the true iron mass is
under-estimated between 2 and 3 orders of magnitude.
In comparison, we observe a much better iron mass es-
timation for the debiased regularization with both over-
and under-estimation occurring. The best results ob-
tained across regular, debiased and Tikhonov regular-
ization are observed for the TV-phantom with its large
homogeneous spatial structures. In detail we observe
that the true iron masses are estimated to be in-between
a factor of 0.68 and 0.71 of its true value for Tikhonov
regularization, a factor of 0.4 and 0.52 for regular TV reg-
ularization, and a factor of 0.88 and 1.01 for the debiased
TV regularization.

VI. Discussion and conclusion
In the present work, TV and `1 regularized MPI recon-
struction bias was analysed and a method for its reduc-
tion was introduced. To this end, simulated data and an
experimental application was considered. The proposed
bias-reduction method is able to successfully reduce bias
in both cases and outperforms standard Tikhonov regu-
larization for the latter. Although only two specific spar-
sity promoting regularization methods were considered,
the proposed debiasing method is very general and ap-
plicable to a wide range of regularization functionals.

The bias we observed in the regularized reconstruc-
tions is of two kinds. First, an incorrect estimation of
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Figure 7: Reconstructions of the TV- and `1-phantom with noise level 100 are shown on the left and right hand side of the figure.
Each phantom is reconstructed using a low, medium, and large regularization parameter, without and with additional debiasing.

the signal strengths in regions with MPI tracer. Under-
estimation could be observed for both regularization
types with a clear trend towards lower signal strengths
as the regularization parameter increases. This is not
surprising considering that the solution of the TV and
`1 regularized MPI reconstruction tends towards zero in
the limit, where the respective regularization parame-
ter tends towards infinity. In case of TV regularization
both over- and under-estimation could be observed, the
former occurring for small regularization parameters.
Second, we found low intensity noisy signal in regions
without tracer. Due to the fact that the reconstructed
MPI signal is non-negative, this leads to a systematic
over-estimation of the signal in these regions. Although
the strength of the bias seems to be more severe in our
experimental setup, the general characteristic of the bias
seems independent on the choice of simulation versus ex-
perimental setup. Note that the latter bias is also present
without additional regularization terms. We therefore

attribute it to concentration vectors being restricted to
the non-negative half space, which is also a form of regu-
larization. In general bias will always be present in MPI
if regularization is used, although its characteristics and
strength may differ for each functional.

Our results show that the bias introduced by the TV
and `1 regularization functionals can be significantly re-
duced by an additional debiasing step, which is adopted
from [26]. This is best illustrated using our simulation
setup, where the discrepancy maps and the NRMSD can
be used to quantify the bias. A comparison of the dis-
crepancy maps of regular and debiased reconstructions
shows that debiasing improves the estimation of the sig-
nal strengths in regions with MPI tracer and lowers the
background signal in regions without. Both improve-
ments net in a decrease of the NRMSD values before and
after debiasing as shown in Figure 5, respectively. Dis-
crepancy map and NRMSD are not available in our exper-
imental setup such that we restricted ourselves to a visual

10.18416/ijmpi.2021.2112002 © 2021 Infinite Science Publishing

https://dx.doi.org/10.18416/ijmpi.2021.2112002
https://dx.doi.org/10.18416/ijmpi.2021.2112002


International Journal on Magnetic Particle Imaging 11

TV-Phantom

0

5 Tikhonov

0

0.12 `1-Phantom

0

5

m
g

F
e m

L −
1

Tikhonov

0

0.1

iro
n

co
n

cen
tratio

n
1 5
α

o
p

t

TV

0

3.5
Debiasing

0

18 `1

0

3
·10−2

m
g

F
e m

L −
1

Debiasing

0

15

iro
n

co
n

cen
tratio

n
α

o
p

t

0

3

0

5

0

4
·10−2

m
g

F
e m

L −
1

0

5

iro
n

co
n

cen
tratio

n
5
×α

o
p

t

0

2.5

0

4

0

4
·10−2

m
g

F
e m

L −
1

0

1

iro
n

co
n

cen
tratio

n

Figure 8: The central z-slice of reconstructions of the experimental TV- and `1-phantom is shown. For reference, the phantom
and Tikhonov regularized reconstructions with regularization parameter αopt are shown in the top row. The remaining rows
show three reconstructions done using regular TV, debiased TV, regular `1 and debiased `1 regularization from left to right. The
regularization parameter is different for each of these rows with αopt being the regularization parameter with the least deviation
between true and estimated iron mass for the medium circle and central dot within the slice shown.

comparison of the reconstructed images in this case and
a calibration method for choosing the α values that op-
timally quantifies the iron mass with the addition that
we also compared against the commonly used Tikhonov
regularization. Here too, the debiased reconstruction
outperforms the regular reconstruction in terms of recon-
structing the phantoms shape, structure, and estimating
the signal strengths in regions with MPI tracer. Although
signal estimation can have low bias for the Tikhonov re-
construction as well, as shown for the TV phantom, it is
still outperformed by debiased reconstruction in terms
of recovering the phantom’s homogeneous structure.

How well debiasing factually decreases bias depends
mostly on the choice of the regularization parameter α.
In MPI this parameter is often chosen manually. A cer-
tain parameter range is investigated to find a parameter
providing a good trade off between bias and noise, e.g.

based on visual inspection of the reconstructed images.
In our simulation setup we mimicked this step by the
automatic parameter tuning method introduced earlier
and discuss these results next. We found that noisier
measurements lead to larger optimal regularization pa-
rameters for all regularization functionals. This makes
sense, since there is more noise to trade off. Moreover,
we found that the optimal regularization parameter was
not the same for debiased and regular reconstruction.
Hence, the regularization parameter should be tuned
independently for debiased reconstructions. However,
it is noteworthy that even if the suboptimal parameter
of the regular reconstruction was chosen, we observed a
decrease in bias when switching to the debiased recon-
struction. Consequently, this parameter could be used as
starting point when searching for the optimal parameter.
As best seen in our simulation setup, for small α values,
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the debiased reconstruction yields larger bias than the
regular reconstruction as shown in Figure 5 (a) and Fig-
ure 5 (b). For sufficiently large α values a break-even
point is reached, from which on the debiased reconstruc-
tion always yields smaller bias compared to the regular
one. However, this break-even point was more than an
order of magnitude smaller than both the optimal debi-
asing and the optimal regular regularization parameter
in our simulation setup such that this issue seems to be
avoidable. However, since we can not make any general
statements, we advice to take this issue into considera-
tion when adopting this method.

The impact of debiasing also depends on the choice
of the debiasing parameter γ. From the heatmap in Fig-
ure 6, one sees that choosing γ close to its optimal value
ensures a large range of α values resulting in good recon-
struction outcome. Thus, as with most regularization
parameters, this choice must be done manually, depen-
dent on the data to be reconstructed. However, as our
data suggests there is a range of γ values which can pro-
vide good reconstruction outcomes. The debiasing step
with this optimal γ value always offers an improvement
for all possible choices of α, except for extremely small
α values. For small α values, γ also needs to be chosen
small to avoid making the reconstruction worse due to
the noise amplification.

In this work, the estimation of the iron mass in simple
technical phantoms was considered to illustrate the po-
tential impact of bias on applications. Applications that
directly benefit from a more precise iron quantification
are e.g. the quantification of vascular stenosis [11, 12],
or the nanoparticle core size discrimination [23]. Our re-
sults show that bias in both Tikhonov and regular TV and
`1 regularization yields a systematic under-estimation
of the iron mass. Most severe for the regular TV and `1

regularization and less severe for the Tikhonov regular-
ization. In all cases the debiased regularization yielded
the smallest estimation error with both over- and under-
estimation of the true iron masses occurring. For the
debiased `1 regularization the error is still quite large
with estimated iron masses in-between 3.5 µg and 11 µg
compared to the true value of 10 µg such that quantita-
tive applications will be hard to realize in this case and we
encourage further investigation of this issue. For the de-
biased TV regularization however, the relative estimation
error is below 0.11 and more likely to be tolerable. Our
results indicate that debiased regularization is the best
choice for quantitative applications outperforming stan-
dard Tikhonov regularization and their non-debiased
counterparts in our examples. However, Tikhonov reg-
ularization seems a solid fall back option if one finds a
way to handle the systematic error, e.g. by taking it into
account in a post-processing step [22].

In summary, we have shown that bias in MPI caused
by regularization can manifest itself in many ways, e.g.
in a systematic over- or under-estimation of the particle

distribution. Depending on the application this can lead
to systematic errors, e.g. in medical applications such as
the determination of stenosis degrees [12] or quantifica-
tion of perfusion [14]. The debiasing technique proposed
and analyzed here has been shown able to significantly
reduce this issue to the point, where systematic errors
might be tolerable, which makes it especially promis-
ing for MPI imaging applications that require accurate
quantification of the particle distribution.
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