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Abstract
Enhancements in spatial resolution can open new avenues for novel applications, but acquiring data at higher
resolutions generally comes with penalties in measurement times, signal-to-noise ratios and safety concerns.
Therefore, maximizing the spatial resolution of the available data during image reconstruction is paramount.
Magnetic Particle Imaging (MPI) has already reached sub-millimeter spatial resolutions. With standard tracers, this
has been achieved using a reconstruction method that compensates for the point spread function of the system
and the superparamagnetic iron oxide particles (SPIOs). This method is known as the system matrix approach and
uses a calibration measurement, relating the concentration of SPIOs and the true particle response to the measured
signal. Using a calibration measurement for reconstruction requires a comprehensive assessment of the quality of
the system matrix in addition to the measured image data. Analyzing the system matrix by reconstructing selected
measurements contained in itself and visualizing them in image space (henceforward called eigen-reconstructions)
can provide clear information regarding image quality and artifacts. This is equivalent to using ideal measurement
data. Thus, it is possible to identify sources of image artifacts arising solely from the reconstruction, which can be
then compensated. In a preliminary report, we presented the principle of eigen-reconstructions to identify and
reduce reconstruction-induced artifacts. In this work, we focus on the application of the method to enhance spatial
resolution in MPI reconstructions. The principles of an iterative algorithm based on eigen-reconstructions are
also further detailed. It is shown that the algorithm compensates the blur arising during image reconstruction
effectively. For validation, we present tests of our method using 2D and 3D datasets including an homogeneous and
a resolution phantom to demonstrate potential opportunities and limitations.

I. Introduction
In biomedical imaging, enhancements in spatial resolu-
tion open new avenues to investigate smaller structures
and obtain more detailed anatomical and physiologi-
cal information. In Magnetic Particle Imaging (MPI),
alongside cardio-vascular [1, 2], kidney imaging is a
very promising application since its tracers are safe for
chronic kidney disease patients [3, 4]. Using MPI, it could

be possible to quantify important parameters for renal
function, such as perfusion, with high temporal reso-
lution. However, this could be soon achieved safely in
humans with magnetic resonance imaging using novel
contrast agents, e.g. hyperpolarized xenon-129 [5]. And,
while perfusion is a good indicator for deterioration in
renal function, the number of nephrons in the kidney
could be a more accurate and even a predictive indicator
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of renal failure. For this purpose, the quantification of in-
dividual functional nephrons in mouse kidneys has been
demonstrated using cationized-ferritin at resolutions of
tens of micrometers with ultra high field magnetic reso-
nance imaging [6, 7]. Enhancing the spatial resolution in
MPI could make it a more suitable candidate for this type
of application due to its higher sensitivity and quantita-
tive nature. However, acquiring native data with higher
resolutions generally leads to additional costs in terms of
reduced signal-to-noise ratios and increased scan times.
Specifically in MPI, enhancing the resolution during data
acquisition involves the use of higher gradient selection
field (SF) strengths. Additionally, the sampled field-of-
view (FoV) is given by the ratio of (twice) the amplitude
of the oscillating drive field (DF) and the static gradient
SF. This requires the DF to be increased in order to main-
tain a desired FoV with a higher resolution. In MPI, a
typical combination of field strengths are in the order of
a few T/m for the SF and tens of mT for the DF. Achieving
these combinations is not only technically challenging,
but also, could have a negative impact in terms of safety.
This is due to the increased specific absorption rate and
risks of peripheral nerve stimulation [8]. On the other
hand, maximizing spatial resolution of the acquired data
during reconstruction involves only computational costs.
Therefore, evaluating and reducing negative impacts of
the reconstruction on spatial resolution is highly desir-
able.

In this work, we extend our preliminary report [9]
to enhance spatial resolution in MPI images. Our ap-
proach relies on the reduction of blur added during re-
constructions based on the system matrix approach. For
this, we take selected measurements from the system
matrix (MPI measurements with a delta probe at dif-
ferent locations) and reconstruct them as test images
using the same system matrix. Thus, performing what
we have termed eigen-reconstructions of the system ma-
trix. This aids assessing the quality and artifacts of the
system matrix and reconstruction method. We test differ-
ent reconstruction parameters and identify cases where
artifacts are present as blurring. We then use a purpose-
developed algorithm to reduce blurring using informa-
tion from the eigen-reconstructions. The opportunities
and limitations of the method are demonstrated in 2D
and 3D datasets of various phantoms. We include tests
on an homogeneous phantom using two system matrices
acquired with different number of points and showing
different levels of blurring in their eigen-reconstructions.
Moreover, we demonstrate the performance of the de-
blurring algorithm for various reconstruction parameters
and signal-to-noise ratio (SNR) levels in the data using a
resolution phantom.

II. Theory

MPI continues establishing itself as a powerful modality
due to its set of remarkable advantages such as high sam-
pling efficiency and sub-millimeter spatial resolution. In
terms of sampling efficiency, Lissajous trajectories have
enabled the acquisition of whole 3D volumes in ca. 21
milliseconds [1]. These trajectories sample volumes us-
ing variable densities and velocities depending on spatial
location. They also generate multifactorial responses of
the superparamagnetic iron oxide particles (SPIOs) nec-
essary to generate the MPI signal. For instance, the SPIOs’
responses not only follow the Langevin function as re-
sponse of an instantaneous magnetic field strength, but
they also show dependency on drive frequency, temper-
ature, viscosity, etc. Consequently, these responses are
difficult to predict and cause the image reconstruction
of these signals to be non-trivial. One solution employed
for reconstruction is the use of a calibration measure-
ment to characterize the system and particles’ responses.
This process uses a small delta-type sample scanned at
several discrete spatial locations, yielding the so-called
system matrix [10]. In this case, the system matrix is a
measured transfer function that relates a measurement
(image data) to the object (local SPIO concentration) [11]:

SMc= u

Where SM is the system matrix, c is the concentration
vector (local tracer concentration in the object) and u
is the measured signal vector. Thereby, an image or a
volume can be reconstructed using linear algebra tech-
niques such as the regularized Kaczmarz algorithm [12]:

a r g . mi n . ||SMc−u||22+λ||c||
2
2

Where λ is the regularization parameter and || · ||22 in-
dicates the L2-norm. This approach is not only robust,
but also compensates for uneven sample densities and
velocities as well as for the SPIOs’ responses. These re-
sponses determine the point spread function and thus,
the native image resolution which is the derivative of the
Langevin function. In terms of image resolution, the sys-
tem matrix includes the point spread function and allows
to compensate for it. Thus, the reconstructed resolution
can be higher than the native resolution. However, as a
consequence of using measured (non-ideal) data in the
system matrix, the reconstructed images will have de-
pendency on the data quality in the system matrix which
normally is only assessed by evaluating its SNR in Fourier
space [13].

Now, consider that each column of the system matrix
is a full measurement acquired with the probe at one
spatial location. In this case, it is possible to reconstruct
each column independently as a 1D plot, a 2D image
or a 3D volume. Reconstructing these vectors using the
same system matrix from where they were selected is
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the concept of eigen-reconstructions. Formally, this is
performed by equating the measurement vector u to one
desired column n of the system matrix (SM(n )). Thus,
the problem for the image reconstruction becomes:

u= SM(n )⇒ a r g . mi n . ||SMc−SM(n )||22+λ||c||
2
2

Ideally, each of these measurements represents a
unique point in space and should be reconstructed as
a single pixel or voxel with 100% intensity within the
FoV covered by the trajectory. This should be perfectly
achieved since the evaluated data has a perfect match
of signal and noise in the system matrix. Deviations
thereof represent ill-conditions during reconstruction,
translating to artifacts in the reconstructed images. More-
over, since the artifacts found in an eigen-reconstruction
arise from ill-conditioned reconstructions, they are also
expected when reconstructing independent data. This
is the principle of our deblurring algorithm which sub-
tracts the blur found in eigen-reconstructions from re-
constructed images of independent data.

III. Material and methods

To demonstrate our concept, eigen-reconstructions were
performed on MPI measurements available online from
the project "open MPI data" [14, 15]with three different
system matrices (SM1, SM2, and SM3). 3D data measured
in-house was also used with an additional system matrix
(SM4). From the open MPI data project, we used data
acquired using a field-free point preclinical MPI system
(Bruker BioSpin MRI GmbH, Ettlingen, Germany).

For SM1, the acquisition parameters were as follows:
tracer: volume = 1 µL (c = 0.5 mol/L) Ferucarbotran
(Resovist, Bayer Pharma AG, Berlin, Germany), number
of averages (NA) = 1500, Bandwidth = 1.25 MHz. The
excitation was performed using a 2D Lissajous trajec-
tory with sinusoidal excitation (frequencies: fx = 2.5
MHz/102, fy = 2.5 MHz/96) and DF amplitude = 14 mT
in each channel. For the SF, the gradient strength was
= 1.25 T/m (in x- and y-direction). The system matrix
was acquired at 1936 spatial locations using a robot for
positioning (44 × 44 point grid) with FoV = 44 × 44 mm2

(FoVD F = 22 × 22 mm2).
For SM2 and SM3, Perimag (micromod Partikeltech-

nologie, Rostock, Germany) was used as tracer (volume
= 4 µL, c = 0.1 mol/L), the DF amplitude was 12 mT, and
the SF gradient strength was 1.0 T/m. SM2 used a FoV =
38 × 38 × 19 mm3 and SM3 a FoV = 37 × 37 × 18.5 mm3.
The center slice of the data in z-direction was used hence-
forth. The main difference between these two system
matrices was their size: SM2 was acquired with a lower
resolution using a grid of 19 × 19 × 19 points, SM3 was
acquired with a grid of 37 × 37 × 37 points.

For the system matrices SM1, SM2, and SM3 and their
corresponding test data, image reconstruction was per-
formed with the algorithm described in [16]. This is a
regularized Kaczmarz algorithm using x- and y- receive
channels with an 80 kHz high-pass filter. No reordering
or selection of frequency components based on SNR was
performed. Positive and real reconstructed signals were
enforced.

In a typical image reconstruction using the system
matrix approach, the blurring is largely determined by
the number of iterations and the regularization parame-
ter. This presents a trade-off between blurring and noise.
We tested these effects in eigen-reconstructions using
SM1 to optimize these reconstruction parameters.

The next goal was to compensate the blur added by
the reconstruction in independent measurement data.
For this, we developed and implemented a blurring cor-
rection algorithm using eigen-reconstructions. The algo-
rithm follows these steps:

1. Reconstruct an image or volume of the independent
measurement data using a standard system matrix
approach := input

2. Find maximum intensity pixel in the input and store
it as an entry of the output matrix: Ima x (input)⇒
output

3. Select the corresponding location of Ima x (input) in
the system matrix and equate it as measurement
vector (u = SM(n )). Reconstruct the new mea-
surement vector using the same reconstruction pa-
rameters as for the input. This yields the eigen-
reconstruction of that location := EiR(SM(n))

4. Correct intensity of the eigen-reconstruction and
subtract it from the input image. This subtraction
will be taken as an updated input for a new iteration:

input = input - ( Imax(input)
Imax(EiR(SM(n))) ·EiR(SM(n)))

5. Go to step 2 and iterate while Ima x (input) > thresh-
old

A schematic of the algorithm can be observed in Fig-
ure 1. Due to the subtraction of the input and the eigen-
reconstruction, subsequent iterations will loop over high
intensity pixels elsewhere in the FoV. More importantly,
the subtraction includes, and thus, compensates for the
blur of the eigen-reconstruction which also appears in
the standard image reconstruction.

The algorithm was tested and compared to standard
reconstructions using SM1 and the measurement (NA
= 500) of a 5-point phantom filled with Resovist (point
diameter = 1.1 mm, c = 0.5 mol/L, volume = 100 µL) 14.
The threshold value during the correction was modified
to show its effect on the output image and to prove that
the resulting image is not merely equivalent to applying
an intensity threshold on the reconstructed images.

To test further opportunities and limitations of our
method, stand-alone eigen-reconstructions and recon-
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Figure 1: Schematic of the proposed iterative algorithm used
for deblurring. The key steps are: 1) using an input image
reconstructed with standard system matrix methods, 2) find-
ing the maximum intensity pixel and store it as an entry in
the output image, 3) use the maximum intensity pixel and
eigen-reconstructing the same position, 4) subtract the eigen-
reconstruction (with corrected maximum intensity) from the in-
put image. The subtraction removes the highest intensity voxel
and its blur in the input based on the eigen-reconstruction.
5) The subtraction is used as input for a subsequent iteration,
correcting another pixel in the FoV. The algorithm iterates over
all pixels in the input with a maximum intensity of the input
above a desired threshold.

structions with the deblurring algorithm were also evalu-
ated using a phantom in the shape of a cone. The cone
was filled with Perimag (c = 0.05 mol/L, volume = 684
µL), had a 1 mm radius tip, an apex angle of 10 degrees
and a height of 22 mm. In 2D, the ideal reconstruction of
this phantom is approximately a triangle with homoge-
neous concentration [14]. Image reconstructions of the
same measurement data were performed with SM2 and
SM3.

Finally, the performance of the algorithm with 3D
datasets was tested using SM4. These measurements
were taken on a different Bruker preclinical MPI sys-
tem and an in-house implementation of the regularized
Kaczmarz algorithm was used for reconstruction. This
was done with the purpose of further validating our ap-
proach. There, we used a resolution phantom containing
16 probes filled with Resovist. The probes are cylinders
with 2 mm in diameter and 3 mm in height. The separa-
tion of the cylinders varied from 1 to 3.5 mm from their
respective edges with the minimum separation in x-axis
of 1.5 mm and in y-axis of 1 mm [17].

The system matrix (SM4) was acquired with the fol-
lowing parameters: tracer: undiluted Resovist (Ferucar-
botran volume = 27 µL, c = 0.5 mol/L), NA = 100, and
Bandwidth = 1.25 MHz. The excitation was performed
using a 3D Lissajous trajectory with sinusoidal excitation
(fx = 2.5 MHz/102, fy = 2.5 MHz/96, fz = 2.5 MHz/99)
and DF amplitude = 14 mT in each direction. For the

SF, the gradient strength was 1.25 T/m (x- = y- = 1/2
z-direction). The system matrix was acquired at 10976
spatial locations using a robot for positioning (28 × 28
× 14 point grid) with FoV = 28 × 28 × 14 mm3 (FoVD F =
22.4 × 22.4 × 11.2 mm3).

Image reconstruction was performed with a regular-
ized Kaczmarz algorithm using x-, y- and z-receive chan-
nels with a 30 kHz high-pass filter. Frequency compo-
nents with SNR lower than 4 were discarded, positive and
real reconstructed signals were enforced. Using this res-
olution phantom, two tests were performed: 1) the effect
of the number of iterations and the regularization factor
in the Kaczmarz algorithm was investigated. For the test,
we used 1 and 5 iterations with 3 regularization factors:
1 × 10−15, 1 × 10−10 and 1 × 10−1, and 2) the effect of the
number of averages of the independent measurement
data was varied to evaluate the effect of different noise
levels on the deblurring algorithm. For this test, we used
measurement data with NA= 50, 100, 500 and 1000. Plots
of the center slice were also taken in x- and y-directions
to demonstrate the effect of the deblurring algorithm
in comparison to the input image with 1000 averages.
Moreover, isosurface plots were also computed from the
resulting 3D volumes for the input and output data, as
well as a reference reconstruction with 20 iterations.

IV. Results and discussion

In the first eigen-reconstructions, selected measure-
ments in SM1 were individually reconstructed. These
measurements corresponded to different spatially lo-
cated points along the diagonal of the FoV. The sum of
all reconstructions using 1 iteration (i = 1) and no regu-
larization (λ= 0) showed increased blurring with higher
signal intensity in the central points (Figure 2, Left). An
eigen-reconstruction of every probe position was also
performed, yielding 44 × 44 = 1936 images. From these
eigen-reconstructions, the maximum intensity pixel was
then selected by 1) stacking these images to form a 3D
volume (size = 44 × 44 × 1936) and 2) using the func-
tion ’max’ to return the maximum element along the 3rd

dimension. The image in Figure 2, Right was formed fol-
lowing this process. There, a higher intensity was found
in pixels located in the area covered by the trajectory
vs. outside (mean ± standard deviation): 0.44 ± 0.08 vs.
0.31 ± 0.01. The intensities are not normalized but as
the reconstructed vector exists in the system matrix, the
eigen-reconstruction is expected to yield a maximum
intensity of 1. The values below 1 represent a reconstruc-
tion artifact. Moreover, while it is known that signals
can be detected beyond the area covered by the trajec-
tory [18], the ability to reconstruct the selected measure-
ments in these areas could be due to the perfect noise
match (instead of signal) between the measurement and
the system matrix.
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Figure 2: Two representations of eigen-reconstructions SM1

(i = 1, λ= 0). Left: sum of selected sample positions showing
blurring surrounding the center points. Right: maximum inten-
sity pixel of every sample position showing higher intensities
within the area of the Lissajous trajectory with respect to the
overscanned area.

Figure 3: Sum of eigen-reconstructions of sample points from
SM1 located along the diagonal using different reconstruction
parameters. On the Left, the number of iterations (i) was in-
creased from 1 to 10. This step increased the intensity of the
reconstructed objects but the blurring remained visible. On
the Right, the intensity was increased further while the blurring
was reduced by setting the regularization factor (λ) to zero.

In Figure 3, decreased blurring in eigen-reconstruc-
tions was achieved using a lowerλ value. Meanwhile, the
reconstructed intensity converged to the ideal value of 1
as the number of iterations increased. A virtually ideal
reconstruction was achieved when optimizing these fac-
tors, demonstrating the first potential use of the eigen-
reconstructions: reconstruction parameter optimiza-
tion.

We then took these optimized reconstruction parame-
ters (i = 10 andλ= 0) as reference. In contrast to the near-
ideal eigen-reconstructions obtained with these param-
eters, reconstructions using independent measurement
data showed remaining blur (see Input and Reference
in Figure 4). Moreover, the reference image also showed
increased noise levels with respect to the input image.
This was expected due to the well-known trade-off be-
tween resolution and noise arising from the reduced reg-
ularization value. The blur in the input and reference
images was considerably higher than the one observed
in the output image of the proposed algorithm. In the
output image, alongside the higher apparent resolution,
a lower noise level can be observed given the stopping
criterion, which breaks the iteration loop at a selected

Figure 4: Results from standard reconstructions compared to
the proposed correction algorithm using the regularized Kacz-
marz algorithm with SM1 to reconstruct a 5-point phantom.
The input image is obtained with i = 1 and λ = 1×10−6 and
the reference is obtained with the parameters optimized using
eigen-reconstructions i = 10 and λ = 0.

Figure 5: Applying an intensity threshold on a reconstructed
image using a standard approach was not equivalent to cor-
recting with the proposed algorithm using different thresholds
(SM1 used here).

intensity threshold (Output, Figure 4). The threshold was
selected to be higher than the background noise (20%
of the maximum intensity in the image shown). Since
the selected threshold also limits the detection of objects
with lower intensity than 20% of the maximum, different
threshold values were then investigated. This step aims
at assessing the trade-off between object detection and
noise rejection.

Three different exemplary threshold selection values
are shown in Figure 5. There, evidence is also provided
that the correction algorithm is not equivalent to an in-
tensity threshold. It can be observed that the objects are
well resolved across a wide range of threshold values (0.1-
0.5), which is desired to minimize user bias. Moreover,
the intensity threshold deformed the objects whereas our
algorithm reconstructed the expected 5 points from the
lowest tested threshold value (0.1). On the other hand, as
the intensity threshold is initially implemented as hard
stopping criterion, this may cause a loss of information
for large dynamic ranges. For instance, if a maximum
intensity in a volume is produced by a subvolume with
large tracer concentration, other subvolumes producing
less intensity than the applied threshold will be discarded
even if the noise level is lower. An alternative solution to
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Figure 6: Eigen-reconstructions of SM2 and SM3 obtained with
Perimag containing two different grid sizes: a) SM2 with 19 ×
19 and b) SM3 with 37 × 37 points. The two system matrices
were acquired using the same FoV and overscan.

Figure 7: Input and output images of the proposed algorithm
using 2D system matrices SM2 and SM3. The effect of the grid
size of the system matrix can be observed in the reconstruc-
tions: grid size a) 19 × 19 (SM2) and b) 37 × 37 (SM3). Artifacts
can be observed in the output image of the algorithm using the
grid b), containing the higher number of points since a single
pixel can be subtracted more than once when located between
the Ima x of two iterations.

select the stopping criterion can be based on noise levels.
Such an approach could provide an automated adaptive
threshold which could further reduce user bias and avoid
compromising the dynamic range of the signal.

In Figure 6, eigen-reconstructions from SM2 and SM3,
acquired with Perimag, are shown. There, the effect of
the grid size is evident from the intensity and blur. In
the eigen-reconstruction of SM2, the ideal value of 1 was
yielded in the center portions of the FoV with virtually no
blur. In contrast, a lower intensity with higher blur in the
eigen-reconstructed points was found when increasing
the number of points in the grid (in SM3). This suggests
that each measurement is not as unique and thus, the
signal is shared among a higher number of pixels in the
form of noise and blur. Consequently, lower image qual-

Figure 8: Input (standard reconstruction), output (eigen-
reconstruction deblurred), and eigen-reconstructions (sample
measurements) for various iteration (i ) and regularization (λ)
values. Input and output images display the center slices of the
reconstructed resolution phantom using SM4. Deblurring is
observed in all output images. The eigen-reconstructions show
different intensities and blur levels.

ity when reconstructing independent test data can also
be expected in this case.

Reconstructions of a shape phantom with an homo-
geneous concentration can be appreciated in Figure 7.
To reconstruct the 2D image, we selected a slice of the 3D
grid of probe positions in SM2 and SM3, emulating a pure
2D calibration with reduced calibration time. This is a
simplified strategy in comparison to the selection of a
2D slice from a 3D reconstructed volume. And while this
simplification might not be ideal since the cone covers
locations that were not calibrated, standard reconstruc-
tions did not show artifacts. Additionally, the strategy
allowed the desired relative comparison to the output of
our algorithm. For this direct comparison, the resulting
images from using a standard reconstruction algorithm
(input) are displayed next to the output of the proposed
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Figure 9: Input (standard reconstruction) and output (eigen-
reconstruction deblurred) images from measurement data con-
taining different number of averages (NA). Reconstructions
were performed using SM4 with i = 1 and λ = 1× 10−15. Im-
ages obtained after applying the deblurring algorithm (output)
showed high similarities despite the different noise levels ob-
served in the standard reconstructions.

deblurring algorithm. There, a) is the reconstructed data
using SM2, with the grid of 19 × 19 points whereas b)
was reconstructed using SM3, with the 37 × 37 grid sys-
tem matrix. In a), the input image contains higher back-
ground noise than the output as this is filtered out by
the threshold value of the stopping criterion. Further-
more, no deformations can be observed to the shape
of the phantom. On the other hand, artifacts appeared
when applying the deblurring algorithm on reconstruc-
tions using the higher-point grid system matrix (SM3).
In this case, several points have lower to negligible sig-
nal within the object which is not consistent with the
real homogeneous distribution of tracer within the phan-
tom. This might occur as a single pixel can be subtracted
more than once when located between two pixels recog-
nized as Ima x in two different iterations. This is a clear

Figure 10: Exemplary input (standard reconstruction) and
output (eigen-reconstruction deblurred) images of a resolu-
tion phantom with sample profiles. Reconstructions were per-
formed using SM4 with i = 1 and λ = 1× 10−15. Higher inten-
sities and sharper objects can be observed in the profiles of
the reconstructed output images in comparison to the input
standard reconstruction.

limitation that has to be considered when applying the
deblurring algorithm to structures with homogeneous
concentrations. Being "hot-spot" technique, MPI often
yields sparse images with inhomogeneous concentra-
tions e.g. in vivo, it shows no endogenous signal and its
tracers do not distribute homogeneously within the body.
However, MPI images may neither be as sparse as the
point image phantoms nor as homogeneous as the cone
phantom in this work. Rather, in vivo images will range
in between these two extrema which are presented here
as boundary conditions. Consequently, the algorithm’s
performance is expected to oscillate between these two
cases with a high dependency on the homogeneity and
sharpness of the reconstructed objects. For instance,
one should consider that a complex structure could re-
semble as a point phantom with a low selection field
amplitude and a point phantom can be reconstructed
as a distribution using high resolutions as demonstrated
by the eigen-reconstructions. Moreover, since the de-
blurring algorithm is an additional process after image
reconstruction, it can be directly compared to the input
image and opted out of the reconstruction pipeline, for
instance when image artifacts are recognized. Rules for
the use of the algorithm should be created depending on
the quality of the eigen-reconstruction and the sparsity
of the images.

The algorithm was also tested on 3D datasets to de-
blur the reconstructions of a resolution phantom. The
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Figure 11: Isosurface representation of the reconstructed 3D volumes of the resolution phantom using SM4. The recon-
struction followed: a standard Kaczmarz reconstruction with 1 iteration and a regularization factor of 1×10−15 (Input), an
eigen-reconstruction based iterative deblurring of the input data (Output), and a reference Kaczmarz reconstruction (Reference)
using 20 iterations and a regularization factor of 1×10−15. Effective deblurring and noise filtration can be appreciated in the
volumes using the proposed algorithm.

results shown in Figure 8 demonstrate the ability to sepa-
rate objects more clearly in output images compared the
standard method (input). Moreover, it can be observed
that higher gains from the algorithm were obtained as
the blur in the input images increased. As in 2D, this is
because the effect of the algorithm will be lessened as
the eigen-reconstruction becomes more ideal and the
reconstructed voxel is more unique. This effect can be ob-
served also in Figure 8 where exemplary reconstructions
using 2 iteration values (i = 1, and 5) and three regular-
ization factors (λ = 1× 10−15, 1× 10−10, and 1× 10−1) are
displayed. In 3D, another consideration is the compu-
tation time for the algorithm. In this respect, since the
algorithm iterates the reconstruction on a point-by-point
basis, the reconstruction time can be severely extended.
This is mainly controlled by the number of iterations and
the threshold value which determines how many voxels
will be considered. To compute each voxel above the
threshold, the algorithm takes the same amount of time
as the standard reconstruction when the reconstruction
parameters are unchanged. For instance, the standard re-
construction in Figure 8 (i= 1, andλ= 1× 10−15) was per-
formed in ca. 15 seconds, while the eigen-reconstruction
algorithm iterated over 70 points for a computation time
of ca. 17.5 min. Therefore, it is convenient that the results
show efficient deblurring after obtaining the input from
the standard reconstruction with a single iteration. In
this manner, the reconstruction time can be maintained
as low as possible. Parallel computing and regional anal-
ysis could also speed up the reconstruction time.

Contrary to a reduced number of iterations of the
standard reconstruction, a very high regularization fac-
tor there can blur the image beyond the limits of the al-
gorithm and cause artifacts. For instance, 5 points were
reconstructed instead of 4 in the vertical direction using

λ= 1×10−1 (see e.g. 3rd column of dots in the output of
i = 1, Figure 8).

Using the eigen-reconstruction framework, two
sources of image artifacts were identified. First, blur-
ring artifacts arose when the sampling density in the
system matrix was increased. This suggests that the par-
ticle responses become less distinctive as the separation
between probe positioning decreases. Secondly, we iden-
tified that the blurring is influenced by the reconstruc-
tion parameters namely, the number of iterations and
the regularization parameter. This is expected as the re-
construction method solves the least-squares problem
by minimizing the norm iteratively and uses the regu-
larization factor to promote smooth varying solutions
with less noise. The latter strategy is taken as the sys-
tem matrix is overdetermined (m > n) and, similarly to
the measurement vector, it also includes noise. There-
fore, the regularization is used as an attempt to reduce
the impact of the noise in the reconstruction under the
constraint of maintaining resolved objects.

Figure 9 displays reconstructions resulting from the
resolution phantom using measurements with different
number of averages. The standard reconstructions (in-
put) showed the expected increased noise level with de-
creasing number of averages. However, the output im-
ages yielded by the deblurring algorithm based on eigen-
reconstructions showed high degree of similarity despite
the different noise levels in the input images. This indi-
cates that the algorithm is robust for these tested noise
levels. Here, the additional feature of noise filtration due
to the threshold value of the stopping criteria is evident
from the lack of background noise in the output images.
Moreover, since the concentration of the tracer affects
the signal-to-noise ratio of the image, the robustness of
the algorithm to a wide range of signal-to-noise ratios is
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an important finding. However, the performance of the
algorithm should be reevaluated for in vivo studies where
the tracer is further diluted, reducing the signal-to-noise
ratio.

The deblurring was also evident in profile plots
obtained from the standard reconstruction and from
the iterative deblurring algorithm based on eigen-
reconstructions (see Figure 10). In the profiles, the four
objects can be individually observed in both x- and y-axis
after deblurring, contrary to the standard reconstruction
(input) where objects are partially merged. The noise fil-
tration capabilities of the algorithm can also be observed
in the y-axis profiles at 3 mm in comparison to the input
image. The quantification of the spatial resolution im-
provement depends on the input image chosen, which
determines the lower limit, and the resolution of the sys-
tem matrix, which determines the higher limit. In the
example presented in Figure 10, the FWHM of the objects
in the resolution phantom were a ca. 1.6-fold higher in
the input compared to the output image. Moreover, the
objects with 1 mm separation can be individually visu-
alized in the profiles of the output images. While this
image resolution is still far from the resolution necessary
in applications such as the quantification of individual
nephrons in rodent kidneys, our approach is a positive
step towards maximizing the current capabilities of MPI
scanners.

The deblurring and noise filtration can also be ob-
served in the isosurface plots shown in Figure 11 in com-
parison to the input volume. There, the output 3D vol-
ume also demonstrates a higher apparent resolution
compared to an standard reconstruction with 20 iter-
ations (Figure 11, Reference).

V. Conclusions

In this work, we demonstrated the application of eigen-
reconstructions to evaluate the quality and artifacts of
reconstructions based on the system matrix appproach.
We also presented and tested an algorithm based on
eigen-reconstructions to deblur MPI images. The first
important finding is that the eigen-reconstructions of
some system matrices are non-ideal and show artifacts.
These were deviations in intensity and blur from the ideal
reconstruction of a selected measurement with the sys-
tem matrix where the measurement is also contained.
This occurs despite the fact that the selected measure-
ment has an exact match of signal and noise in the sys-
tem matrix. These artifacts were diminished with pa-
rameter optimization following eigen-reconstructions.
Thus, the potential of eigen-reconstructions as a test-
ing tool for the system matrix and standard reconstruc-
tion algorithm was demonstrated. Moreover, these im-
age artifacts present in the eigen-reconstructions are
also expected in the test data and can be compensated.

Our proposed algorithm decreased image blurring ef-
fectively thus, increasing apparent spatial resolutions.
This suggests that the blur in the system matrix corre-
lates with the blur of the image data. However, limita-
tions were also found when reconstructing an homo-
geneous structure. Although more sparse and varied
contrasts are expected in MPI measurements in vivo,
eigen-reconstructions should be applied carefully e.g.
rules for the use of deblurring could be created depend-
ing on the application. In terms of testing, we expect
the use of eigen-reconstructions to be adopted and used
routinely to ensure system matrix and reconstruction
quality. Moreover, the proposed algorithm could be ap-
plied to compensate for added blur and noise filtration
during the reconstruction.
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