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Abstract
Image reconstruction is an integral part of Magnetic Particle Imaging (MPI). Over the last years, several methods
have been proposed for reconstructing MPI images more efficiently and accurately. One major challenge for
model-based MPI image reconstruction methods is the realistic modeling of the measurement system; effects like
non-linear gradient fields, non-uniform drive fields, space-dependent coil sensitivities, drive frequency filtering
and particle relaxation, if not properly accounted for in the model, may yield inaccurate reconstructions. This
work addresses these issues by means of an image reconstruction method that accounts for the coil sensitivity,
baseline recovery and particle relaxation. We investigate the proposed approach for a 1D MPI setup, and provide an
approach for the calculation of the uncertainties of the reconstructed images.

I. Introduction

Magnetic Particle Imaging (MPI) is a relatively recent
technique for remotely detecting magnetic nanoparticle
(MNP) tracers [1], with several potential applications in
biomedical imaging and diagnosis, as well as materials
research. MPI relies on the nonlinear magnetization re-
sponse of MNPs when exposed to oscillating magnetic
fields.

Special arrangements of magnets or electromagnets
allow selectively saturating the particles’ magnetization
over time in such a way that the distribution of MNPs
can be measured as a function of space, through the

generation of a moving field-free point (FFP) or field-free
line (FFL) which saturate all particles but the ones near
the no-field region [2].

Since the publication of the first experimental results
in 2005 [1], several research groups have investigated this
new technique, resulting in countless improvements and
demonstrating the potential of MPI for providing images
with high sensitivity and resolution, both in space and
time domains. For a more comprehensive review of MPI
concepts, see e.g. [2, 3].

Image reconstruction has played a significant role
in MPI since its early stages. In order to translate the
measured voltage signals into image data (which corre-
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sponds to a discretized function of MNP concentration
over space), several approaches have been proposed so
far, with two main branches of MPI image reconstruction
methods emerging over the last years.

The system function method employs a calibration
matrix, or system matrix, which contains the measure-
ment system’s response to a reference sample placed
in different positions within the scanner’s field of view
(FOV). Once the calibration is done, the reconstruction is
performed by solving a system of linear equations relat-
ing the measurement data vector and the calibration ma-
trix. Typical algorithms used for the inversion of the cali-
bration matrix include singular-value decomposition [4]
and the Kaczmarz method [5].

The x-space method is based on a simplified model
for the signal generation, that due to additional assump-
tions about the experiment, can be expressed analytically
and therefore can be evaluated in less time. It requires no
system of equations, and no deconvolution is performed,
instead the output image is the result of space mapping
and scaling operations [6], and therefore still contains the
blurring caused by the point spread function (PSF) which
represents the particle’s magnetization response to a par-
ticular FFP shape and scanning speed. Some alternative
approaches include AI-based methods, in which neural
networks are used to remove image blurring and artifacts
[7, 8].

The rigorous modeling of MPI systems allows for the
investigation of the general characteristics of a particular
setup, like the measurement sensitivity and resolution
[4], and also provides valuable information for the im-
age reconstruction. The biggest challenge is the realis-
tic modeling of the measurement system, including but
not limited to non-linear gradient fields, non-uniform
drive fields, space-dependent coil sensitivities, drive fre-
quency filtering, particle magnetization responses and
relaxation. Additionally, system imperfections like mis-
aligned coils, off-specification behaviour of components
or irregular particle magnetization response (e.g. due to
unwanted particle interactions) make the task of accu-
rately modeling the system even more challenging.

The calibration-based system function method nat-
urally addresses all these issues by means of its calibra-
tion matrix, which contains all information related to
the setup and the particle dynamics, yielding state-of-
the-art reconstructions. This comes at the cost of a time-
consuming calibration process, a computer intensive
numerical reconstruction, and the constraint of having
your system "locked" for the selected measurement pa-
rameters, meaning that any changes in the experiment -
be it in field intensities, particle characteristics or even
temperature - would require a new calibration in order
to guarantee superior measurement accuracy.

A number of model-based system function methods
were implemented to address the long acquisition times
required for calibration, by modeling the system ele-

ments and computing the elements of the calibration
matrix [5, 9, 10], and even by employing a hybrid system
function, in which the scanner elements are modeled
and the particle response is measured to compose the
calibration matrix [11]. Despite the good results, they
still do not match the calibration-based method. A few
other methods instead try to describe what one could
call a MPI forward operator that would allow for direct
deconvolution. The formulation of a spatial convolu-
tion operator is shown in [12], while the modeling of a
MPI core operator, followed by an image reconstruction
scheme is described in [13].

Analytical model-based methods such as the x-space
method deal with these issues by simplifying the model,
in general assuming that all non-ideal behavior is neg-
ligible - in other words, assuming linear gradient fields,
uniform drive fields, constant coil sensitivities and (origi-
nally) no relaxation - and that no deconvolution is neces-
sary for obtaining an image. The greater flexibility comes
at the cost of lower resolutions.

Drive frequency filtering, or baseline filtering, is a
technique widely used in MPI [2, 14]. It consists of us-
ing band-stop analog filters to remove the feedthrough
influence of the drive fields from the measured signal
by filtering out the signal’s fundamental frequency. As
the excitation signal is usually sinusoidal, all remaining
higher-order harmonics are related only to the particle re-
sponse. The main drawback of this method is the loss of
information relative to the drive fundamental frequency
of the particle response. It is shown in [14–16] that the
baseline filtering causes an offset on the filtered signal,
and that stitching partial field of views (pFOVs) back to-
gether is an approach that allows recovering from this
offset. The proposed approaches to address this problem
in a system function framework either require additional
measurements before and after the actual experiment
[17, 18], or a library of noise measurements. While these
approaches have the advantage of also determining dy-
namic effects, they also require more time due to the
additional measurements.

The sensitivity of the receive coil depends strongly on
its shape and size, as well as on its position with respect to
the sample (or sample region) under measurement. For
optimal accuracy, the coil sensitivity profile should be
accounted for, being either measured or computed. The
sensitivity of the receive coil can be computed in terms of
the field this coil would generate if driven by an unitary
current, being expressed in units [T/A]. According to the
law of reciprocity [2], the coil sensitivity can be employed
for either computing the field generated by a current I
or the voltage induced by a time-varying magnetization
M (t ).

Finally, particle relaxation is known to degrade im-
age quality in MPI experiments, as the delayed magne-
tization response to an applied magnetic field causes
additional blurring to the reconstructed images. The
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Figure 1: Measurement setups simulated for this work. The setup shown in (a) corresponds to the MPS system simulated for the
software evaluation, while the one shown in (b) corresponds to the 1D MPI system simulated for the basic image reconstruction
tests. The widths of the coils in (b) are infinitely small for simplicity. Figures are not to scale.

amount of blurring depends on the particle’s relaxation
time, and the effect it has on the measured time signal
can be described in terms of a convolution kernel in time
and space domain as shown in [19, 20], while a method
for estimating the relaxation time and deconvolving the
relaxation kernel from the measured signal can be found
in [21].

This work presents an MPI image reconstruction
method based on the model presented in [13] that ac-
counts for space-dependent coil sensitivity, and baseline
filtering, as well as particle relaxation. The analytical for-
ward model used for the reconstruction was compared
against data generated by a rigorous MPI simulation,
which in turn was compared against real Magnetic Parti-
cle Spectroscopy (MPS) measurements. In addition, this
work also provides an approach to the calculation of the
uncertainties of the reconstructed concentration images.

II. Theory

II.I. Rigorous MPI Simulations

In order to allow for a proper evaluation of the perfor-
mance of the reconstruction algorithms studied for this
work, MPI data is necessary. In the absence of a work-
ing MPI physical setup for generating the data, which
is normal in earlier stages of development, one could
either obtain data generated by another group, or sim-
ulate an MPI measurement system. Even though there
are MPI data available online [22], these data were gener-
ated in such a way that they must be reconstructed with
the system function method. Therefore, to enable test-
ing reconstruction schemes that follow either the system
function or x-space approaches, as well as any other one,
a simulation software has been developed to generate
MPI measurement data.

The MPS/MPI simulation tool [23]was developed in
C/C++ following an object-oriented programming ap-
proach, and is composed of modeled active elements
(magnets, inductive excitation coils and MNP samples)
as well as passive elements (receive coils/solenoids).
Each component was developed, tested and validated
individually to ensure the proper behavior. Geometri-
cal imperfections cannot be included in the apparatus
elements, but our tool enables simulating effects like
space-dependent coil sensitivity, non-linear gradients,
non-uniform drive fields and particle relaxation.

The MNPs samples are structured as discrete voxel
arrays; each voxel contains information describing the
particle (diameter and bulk saturation magnetization),
its concentration, temperature, as well as the relaxation,
which is implemented as a magnetization history that
depends on the specified relaxation time and the sam-
pling interval. Each voxel responds independently to the
magnetic fields generated by the magnets and coils. The
signal induced on a receive coil made of a single turn,
according to Faraday’s law, is given by:

s (t ) =−dφ (t )/d t [V] (1)

whereφ [Wb] is the total magnetic flux across it. The flux
due to the particles’ magnetization is computed from
each of the N voxel’s discrete contributions across a re-
ceive coil composed by multiple windings as:

φM(t ) =
N
∑

i=1

Vi ·R(xi ) ·Mi (t ), (2)

where Vi [m 3] is the voxel volume, R(xi ) [T/A] is the coil
sensitivity vector with relation to the voxel position xi , in
accordance with the law of reciprocity (cf. [2]), and µ0 is
the vacuum permeability. The (non-relaxed) magnetiza-
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tion vector Mi [A/m] is given by the Langevin equation:

Mi (t ) = ρi mL [k H (t )] H(t )
‖H(t )‖ (3)

= ρi m
�

coth [k‖H (t )‖]−
�

1
k‖H(t )‖

�	 H(t )
‖H(t )‖

where k =µ0m/kB T [m/A],ρi =ρ (xi ) [1/m3] is the voxel
concentration, m [Am2] is the particle magnetic moment,
H [A/m] is the applied field vector, kB [J/K] is the Boltz-
mann constant and T is the temperature in Kelvin. The
flux due to the applied magnetic fields is composed of
contributions from the static gradient field and the dy-
namic drive field. The former does not contribute to the
induced voltage generation, while the latter is time de-
pendent. Assuming a spatially uniform drive field, the
flux due to the drive field Hd is given by

φHd
(t ) =µ0Ar [Hd (t ) ·ar] (4)

where Ar [m2] is the area of the receive coil and ar is the
coil’s normal direction vector. The induced voltage on
the receive coil is then calculated from the computed
changes inφ =φM+φHd

along the simulation.
A more thorough verification of the software signal

generation and response calculations, while employing
all elements together, was performed by comparing the
data generated during a simulation that reproduced the
experiment performed in [24] against real measurement
data. The experiment consisted in the measurement
of the gradiometric MPS signal generated by a 300 µL
sample of Vivotrax1 at 5 mg/mL concentration. The sinu-
soidal excitation field was generated by a solenoid, and
the signal produced by the MNP sample was collected by
two pickup coils, one positioned around the sample, and
the other one away from the sample, so that the drive
signal could be cancelled. The estimated sensitivity of
the receive coil surrounding the sample is 2.58 ·10−3 T/A,
and the estimated feedthrough cancellation defined as
the voltage attenuation resulting from the gradiometric
setup is on the order of 86 dB.

Figure 1 (a) shows the setup employed for the MPS ex-
periment, while Figure 2 shows the comparison between
the simulated and experimental data, for different drive
current amplitudes and a frequency of 2427 Hz. The dif-
ferences between the shapes of the simulated and real
measured data are due to the magnetic coercivity exhib-
ited by the Vivotrax sample, which has been observed
experimentally but not reproduced by the simulation
software - the MNPs are implemented as ideal Langevin
particles; in the case of this sample, the measured M
versus H data suggested that the sample magnetization
behaved approximately like one containing magnetite

1Disclaimer: Certain commercial materials are identified in order to
specify the experimental procedure adequately. Such identification
is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology or any of the institu-
tions associated with the authors, nor is it intended to imply that the
materials are necessarily the best available for the purpose.

Figure 2: Simulated (thick lines) and measured (thin lines)
MPS signals for different excitation currents. The generated
peak drive fields were 13.85 mT, 7.53 mT and 3.76 mT for the
excitation currents of 50.6 A, 27.5 A and 13.75 A, respectively.

Figure 3: Calculated magnetizations according to the Langevin
equation (solid lines) against measured M vs. H data for Vivo-
trax (blue dots).

particles with a core diameter of 11 nm, as can be seen in
Figure 3. It is also possible to see in the plot the hysteresis
loop resulting from the sample coercivity. It is important
to notice that this kind of difference in shape is a result
of the adopted model for particle magnetization, and
therefore similar effects should be expected in any an-
alytical method that adopts the Langevin equation as a
magnetization model.

Once the simulation software was evaluated, a 1D
MPI system was simulated, according to Figure 1 (b).
The concentration profile adopted for the simulations is
the one shown in Figure 5 (a), the generated signals, for
different relaxation times, are shown in Figure 4.

II.II. Analytical Model

The analytical formulation, as well as the reconstruction
of the ground truth particle concentration is based on
the MPI signal equation from Ref. [13]:

s (t ) =mR0
d

d t

∫

R3

ρ (x)L
�

k

µ0
||G (r−x) ||

�

G (r−x)
||G (r−x) ||

d x.

(5)
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Figure 4: Simulated 1D MPI signals for different relaxation
times.

Here, ρ [1/m3] is the particle concentration, R0 [T/A] is
the nominal sensitivity of the receiver coils, G [T/m] is the
gradient of the applied gradient field, m = 1

6πMs d 3 [Am2]
is the magnetic moment of a single particle, and r =
r (t ) [m] is the trajectory of the field free point, see Table.
1 for details.

The profile reconstruction is based on the MPI core
operator approach, for details see Ref. [13], specifically
Algorithm 1. We first populate a convolution matrix
K based on the nominal PSF, i.e., the derivative of the
Langevin function, and determine the particle distribu-
tion by solving the regularized minimization problem
[25]with regularization parameter λ:

ρ̂ = arg min
�

||Kρ −
�

y0+ε
�

||2+λ||ρ ||2
�

, λ ∈R+. (6)

Note, that the vector y0 [1/m3] consists of the spatially
gridded image data derived from the possibly filtered
raw signal and is assumed to be perturbed by a noise
vector ε. We eliminate three pixels from each side of
the acquired image data vector y0 in all of the following
examples to eliminate zero and close-to-zero velocity
data that can result in reconstruction artifacts. We use a
Python implementation [26] of the quasi-Newton type
L-BFGS-B algorithm (see Ref. [27]) to solve the above
problem within bounds determined by basic physical
principles, namely we expect the reconstructed particle
concentrations to be non-negative and finite. The regu-
larization parameter λ is chosen to be between 104 and
105.

Rigorous simulations with the dimensions from
Fig. 1, show that the receive coil sensitivity R (x) in this
specific case reduces by 42 % at the edge of the field-of-
view compared to the nominal value, cf. Figure 5 (b). This
reduction of the coil sensitivity consequently impacts the
calculated signal, as shown in Figures 5 (c-d), making it
necessary to include these effects in the analytical model
and the reconstruction.

We can account for the loss in coil sensitivity and
the resulting loss in signal by scaling the vector of image
data y0 of the discretized MPI core operator with the

Table 1: MPI Simulation Parameters

Parameter Symbol Value
Particle Diameter d 2 ·10−8 m

Saturation Magnetization Ms 4.5 ·105 A/m
Temperature T 273 K

Gradient Field Amp. G 5.00 T/m
Coil Sensitivity R0 8.38 ·10−4 T/A

Field of View FOV ±5 ·10−3 m
Regularization Parameter λ 104−105

Figure 5: (a) Ground truth distribution, (b) space dependency
of coil sensitivity obtained from rigorous simulations, (c) com-
parison of the rigorous and analytical models, and (d) com-
parison of the rigorous and analytical simulations with added
space dependency of coil sensitivity in the analytical model.

normalized coil sensitivity, such that

y (x) =R−1
0 R (x)y0 (x) . (7)

This scaled vector will then be used to reconstruct the
particle concentration profile using Eq. 6. It should be
noted that not accounting for this loss in signal leads to
an underestimation of the particle concentration propor-
tional to the loss in coil sensitivity along the FOV.

II.III. Estimating the Baseline Loss
In real world applications, the first harmonic information
is usually lost due to filtering, leading to a constant offset
in the signal, as adressed by Lu et al. in Ref. [15], where
an algorithm that recovers this offset has been proposed.
While that approach requires overlapping partial fields of
view that need to be matched in an additional processing
step, we present an approach that is a simple extension of
Eq. 6; we assume a constant bias term, that will account
for the constant baseline loss, i.e., instead of considering

Kρ = y+ε, (8)
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Figure 6: (a) Reconstructions ρ̂ and ground truth ρ0 if and if
not accounted for baseline loss, (b) theory-to-experiment fits
with and without estimated baseline loss b̂ .

where we have K ∈Rn × n , and ρ, y,ε ∈Rn , we consider

Kρ = y− b 1+ε⇔Kρ + b 1= y+ε, (9)

with 1= [1, 1, . . . , 1]ᵀ ∈Rn . We can use that,

Kρ + b 1=
�

K 1
�

�

ρ
b

�

, (10)

and, by defining the matrix Z =
�

K 1
�

∈ Rn × (n+1) and

the vector c =
�

ρᵀ b
�ᵀ ∈ Rn+1 (see e.g. [28, 29]), are

able to determine the concentration profile, ρ, and the
baseline loss, b , by solving the equation

Zc= y+ε, (11)

or, similar to the previous approach, the corresponding
minimization problem:

ĉ=
�

ρ̂ᵀ b̂
�ᵀ
= arg min

�

||Zc−
�

y+ε
�

||2+λ||ρ ||2
�

. (12)

Figure 6 presents reconstruction results both with
and without additionally estimating the baseline loss.

II.IV. Effect of Relaxation

It is well known that the assumption of adiabatic particles
is an idealization [30, 31], and that it may be insufficient
to model the magnetization response of non-adiabatic
particles with a simple Langevin function. Non-adiabatic
particles can lead to a diminished MPI signal [32, 33] and
a distortion of the point-spread function, leading to a
blurred image, see e.g., Refs. [19–21].

In this Section, we therefore extend our model follow-
ing the approaches presented in the above references,
where the effect of a relaxation time τ> 0 s on the point
spread function (PSF) has been modelled by convolving
the original PSF with a relaxation kernel κτ, such that:

PSFrelaxed = PSF ∗κτ, (13)

with the relaxation kernel in space domain (see Eq. (8)
in Ref. [34]):

Figure 7: (a) Relaxation kernel in space domain, (b) ideal and
relaxed point spread functions for positive scanning direction
(arrow), (c) comparison of the rigorous and analytical models
for τ= 5 ·10−7 s, and (d) comparison of the rigorous and ana-
lytical models for τ= 10−6 s

κτ (x ) =
1

τv
exp

�

−
x

τv

�

H (x ) [1/m], (14)

here, v is the FFP’s velocity, and H the Heaviside step
function.

Figure 7 (b) shows the effect of a relaxation time of
τ= 10−6 s on the point spread function; panels (c) and (d)
show the effect relaxation has on the signal picked up by
the receive coil, both for the rigorous and the analytical
model for relaxation times τ = 5 · 10−7 s and τ = 10−6 s,
respectively, for a drive frequency of 25 kHz. Note, how
the relaxation blurs the signal in the scanning direction,
and how this blurring increases as the relaxation time in-
creases. This blurring effect can become a major concern
for high frequency measurements, as τ becomes compa-
rable to the excitation period (in this case,∆t = 4 ·10−5 s).
Here, the shift and width of the relaxed PSF is expected
to increase with increasing relaxation times and/or exci-
tation frequencies.

The shape of the relaxed point spread function
PSFrelaxed shown in Figure 7 may not seem intuitive - the
PSF seems to be advanced in relation to the ideal one,
while the relaxation, in time domain, is observed as a lag
between the applied excitation field and the observed
magnetization - but notice that the PSF is shown in space
domain. In fact, the relaxed PSF should be interpreted
in such way that the magnetization induced at x = 0 m,
for instance, will only exhibit its peak magnitude when
the FFP is already at x ≈ 0.001 m.

II.V. Improving the Reconstruction
Based on the updated point spread function introduced
in the previous Section, we can now modify the recon-
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Figure 8: Reconstructed profiles and theory-to-experiment
fits for negative (top) and positive (bottom) scanning directions
for a relaxation time of τ= 5 ·10−7 s.

struction in such a way that we account for the relaxation,
by replacing the convolution kernel in Eq. (3.26) in Ref.
[13]with the relaxed convolution kernel as in Eq. (13).

However, the fact that the relaxation in space domain,
and hence the convolution kernel, depend on the scan-
ning direction requires a modification of the algorithm
for collecting the data that associates the time signal
with grid data; we split the overall signal into two signals,
corresponding to the negative and positive scanning di-
rections, y−, y+ ∈ Rn , respectively. We then fit each of
them separately with a specific convolution matrix for
the respective scanning directions, K−, K+ ∈Rn × n , each
of them populated using the proper direction-dependent
PSFs.

The data we fit here are simulation data generated
using the rigorous model introduced in Section II.I with
added white noise that has a standard deviationσ equiv-
alent to one percent of the maximum signal value. By
proceeding this way, we prevent ourselves from commit-
ting "inverse crimes", that is evaluating our data with the
same model we used to generate it, see Ref. [35].

The reconstruction of the concentration profiles and
baseline losses is similar to Eq. (12), i.e., we solve either
of the two equations (indexed by + and − respectively)

Z±c= y±+ε, with Z± =
�

K± 1
�

∈Rn × (n+1). (15)

Figure 8 presents the results for both approaches;
note the difference in the input data reflecting the differ-
ent impact of the relaxation for the different scanning
directions.

Alternatively, one can concatenate the convolution
matrices and the image data and determine the concen-
tration by solving

Zsimc= ysim+ε, (16)

where Zsim =
�

K− K+ 1
�

∈ Rn × (2·n+1) , ysim =
�

yᵀ− yᵀ+
�ᵀ ∈ Rn × (2·n ), and c =

�

ρᵀ b
�ᵀ ∈ Rn+1. We will

call the latter approach the simultaneous fit of the mea-
surement data.

II.VI. Uncertainty Analysis
In order to get an estimate for the uncertainties associ-
ated with our fits we use the Monte Carlo [36]method
where we generate multiple realizations of measurement
noise and use these perturbed data as an input to the
reconstruction. By doing this repeatedly, in our case 100
times, we obtain a distribution of the reconstructed par-
ticle concentrations and can report their standard error.
While approaches to the uncertainty estimation based
on linearization have been proposed elsewhere [37], they
should not be used here due to the presence of systematic
errors stemming from the relaxation.

Based on the findings in Figure 9, which compares
the results from the simultaneous fit to the average of the
reconstructions for positive and negative scanning direc-
tions for relaxation times of τ= 5 ·10−7 s and τ= 10−6 s,
respectively, taking the average seems to be a more ac-
curate way of estimating the concentration profile. It
is worth noting that both approaches outperform the
reconstructions without accounting for the relaxation
for both investigated relaxation times. To complete our
analysis we present the reconstructed particle distribu-
tion using the system matrix approach in Figure 10. Even
though the system matrix approach yields a more accu-
rate reconstruction it also requires more time to perform
the calibration of the system and more computer mem-
ory to perform the reconstruction.

III. Conclusion
We have demonstrated how the image reconstruction in
MPI can be improved by accounting for two important
factors, namely the space-dependency of the sensitivity
of the receive coil and non-adiabatic MNPs.

While the inclusion of a space-dependent receive coil
sensitivity is rather straight-forward, resulting in a simple
scaling of the input data vector y0, non-adiabatic MNPs
require a slightly more complex approach by convolv-
ing the PSF used to populate the convolution matrix K
with a relaxation time dependent relaxation kernel and
separating the acquired measurement data based on the
corresponding scanning directions and fitting them ei-
ther separately or simultaneously. Both extensions were
shown to dramatically improve the reliability of the re-
construction of the underlying particle concentration.

In addition we showed how the expected loss in base-
line signal due to filtering of the signal can be estimated
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Figure 9: (Top Row) Average of reconstructions for positive
and negative scanning directions, (middle row) reconstruction
for simultaneous fit, and (bottom row) reconstruction without
accounting for relaxation for τ = 5 · 10−7 s (left column) and
τ= 10−6 s (right column). Error bars represent 95% confidence
intervals based on n = 100 MC simulations.

by including a constant bias term in the linear mini-
mization problem without requiring any additional post-
processing of the measurement data.

Finally we demonstrated how an uncertainty estima-
tion of the reconstructed particle concentration and the
expected loss in baseline signal can be performed by uti-
lizing a Monte Carlo approach.

While the inclusion of the space-dependent receiver
coil sensitivity, and the estimation of the baseline loss
can both be easily included in a 2D or 3D MPI setting,
accounting for non-adiabatic MNPs in 2D or 3D is more
challenging and requires future work in order to make
MPI an even more reliable tool in medical diagnosis and
material research.
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