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Abstract
Image reconstruction in magnetic particle imaging is a challenging task because the optimal image quality can
only be obtained by tuning the reconstruction parameters for each measurement individually. In particular, it
requires a proper selection of the Tikhonov regularization parameter. In this work we propose a deep-learning-based
post-processing technique, which removes the need for manual parameter optimization. The proposed neural
network takes several images reconstructed with different parameters as input and combines them into a single
high-quality image.

I. Introduction

Determining the particle concentration in magnetic par-
ticle imaging (MPI) requires the solution of an ill-posed
inverse problem. A stable solution can only be achieved
by applying some type of regularization [1]. The most
common method addresses this issue by the use of
Tikhonov regularization. A drawback is that it requires
proper selection of the regularization parameter to find
a good compromise between noise reduction and loss of
spatial resolution. In MPI, this is often done manually,
which is time consuming, does not guarantee an optimal
solution, and depends on the observer.

The goal of this paper is to develop an automatic re-
construction pipeline using deep learning (DL). DL can
be applied for image reconstruction in several ways. It
can be used to learn the inverse imaging operator [2, 3],
but this requires a large amount of training data and
ignores any knowledge about the imaging process that
can help building the model. Another option is to use a
neural network only for regularization, as has been done
recently in the context of MPI by integrating a learned
denoiser into the ADMM reconstruction algorithm [4].
A neural network is also used for regularization in the
Deep Image Prior, which was studied for MPI in [5, 6].

II. Methods and Materials
In MPI, the relation between the discrete measurement
uuu ∈CM and the unknown particle concentration vector
ccc ∈CN is linear and can be expressed as

SSSccc +εεε =uuu (1)

where SSS ∈ CM×N is the system matrix describing the
physics of an MPI experiment and εεε ∈ CM is statistical
noise that is added during the measurement process.

Image reconstruction in MPI involves computing ccc
by solving the inverse problem (1) using an appropriate
method that prevents noise amplification. One common
approach is to solve the regularized least-squares prob-
lem

ccc λ =ψSSS ,λ(uuu ) := argmin
ccc
‖SSSccc −uuu‖2

2+λ‖ccc ‖
2
2, (2)

where λ is a regularization parameter that allows to bal-
ance between noise and spatial resolution of the solu-
tion ccc λ. High noise requires larger λ and reduces the
spatial resolution. Low noise allows to reduce λ and get
better spatial resolution. Computationally, we consider
ψSSS ,λ : CM → RN to be a cheap reconstruction method
since it can be solved efficiently with only O (M N ) oper-
ations using few Kaczmarz iterations [7].
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Figure 1: Overview of the proposed image reconstruction
pipeline.

II.I. Proposed Method

Our approach is based on performing L pre-processing
reconstructions with decreasing regularization param-
eters λl , l = 1, . . . , L , of which we know that one will
roughly correspond to the optimal λ. The resulting
ccc λl

, l = 1, . . . , L , can thus be viewed as a multi-channel re-
construction. There are now three tasks to be addressed
in order to end up with a single high quality reconstruc-
tion:

1. noisy channels need to be denoised

2. blurry channels need to be improved in resolution

3. all channels need to be combined

The first two steps can be combined under the term im-
age quality improvement (IQI) and are tasks, for which
deep neural networks (DNNs) perform exceptionally well.
We thus introduce a DNNϕIQI

θlθlθl
:RN →RN , which has the

same architecture but different network parameters θθθ l

for each channel. After the initial pre-reconstruction,
the image quality is improved by applying ϕIQI

θθθ , i.e., we
calculate

ωIQI
SSS ,λl ,θθθ l

(uuu ) =ϕIQI
θθθ l

�

1

α
ψSSS ,λl

(uuu )
�

, l = 1, . . . , L , (3)

where α = ‖ψSSS ,λ1
(uuu )‖∞ is a normalization factor. Note

that α is computed with respect to the first channel, be-
cause the latter is the most robust to noise due to its
large regularization parameter. Finally, we need to com-
bine all channels into a single one, which can be done by
another DNN ϕcombine

θθθ L+1
: RN×L → RN . The proposed re-

construction method, which we name MPIPostProcNet,
is obtained by combining all sub-networks as outlined
in Figure 1. Mathematically, the reconstruction pipeline
can thus be written as

ωreco
SSS ,λλλ,θ̃θθ
(uuu ) =αϕcombine

θθθ L+1

�

ωIQI
SSS ,λ1,θθθ 1

(uuu ), . . . ,ωIQI
SSS ,λL ,θθθ L

(uuu )
�

, (4)

where we grouped all the training parameters θθθ l into a
single vector θ̃θθ and the regularization parameters into
λλλ= (λl )

L
l=1.

II.II. Training
The parameters of the neural network are trained in
an end-to-end fashion using J training pairs (uuu j ,ccc j ),
j = 1, . . . , J . Training is performed by solving the min-
imization problem

J
∑

j=1

D (ωreco
SSS ,λλλ,θ̃θθ
(uuu j ),ccc j )

θ̃θθ→min (5)

where D is a distance measure for which we use the nor-
malized root mean square deviation (NRMSD). Eq. (5) is
optimized using Adam with default momentum settings
of β = (0.9, 0.999), a learning rate of η= 10−3, a batch size
of four and 100 epochs.

Training data is synthesized using a hybrid approach.
We generate random images ccc j using ellipsoids that are
randomly scaled, rotated and convolved with a randomly
chosen Gaussian kernel. Then, the MPI measurement
data is generated by calculating uuu j = SSSccc j + εεε j where
SSS is a measured MPI system matrix and εεε j ∼ N (0,σ2)
is white Gaussian noise whose variance σ2 is derived
from measurements that are acquired when measuring
SSS . The maximum concentration of ccc j is scaled such
that the resulting SNR fits into one of the noise classes
SNRp =

�

5+2.3p−1, 5+2.3p
�

, p = 1, . . . , P with P = 7 lead-
ing to a dynamic range of about 340. The regularization

parameter is chosen asλl =
�

1
50

�l−1
, l = 1, . . . , L with L = 4.

ForψSSS ,λ 10 Kaczmarz iterations were used. In total we
used J = 500 images for training and 140 images for test-
ing. In addition to the synthesized test data we apply
the method to the experimental data from the OpenMPI-
Data set [8]. A matching 3D system matrix with the same
3D Lissajous sequence as used for the OpenMPIData
but with a higher resolution of 22×22×24 is used in all
experiments.

For the denoising network, we use a U-Net like
encoder-decoder architecture [9]. In the encoder part,
downsampling was implemented using max pooling lay-
ers whereas the upsampling in the decoder was per-
formed using fixed trilinear upsampling filters. The leaky
ReLu activation function was used throughout the de-
noising network. In addition to the regular concatenat-
ing skip-connections, we added a residual connection
connecting the network input to its output, as was done
in [10]. Thus, the U-Net itself effectively learns the differ-
ence between the pre-reconstruction and the improved
image estimates. For the combination network, we use a
single convolutional layer followed by an Gaussian error
linear unit activation function. All convolutional layers
apply kernels of size (3, 3, 3).
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Figure 2: Example results for one of the test datasets (13th
xz slice). Columns show the results for different SNR classes.
The first four row show the pre-reconstructionsψSSS ,λ(uuu test) for
different regularization parameters λ. The fifth row shows the
result after application of the neural network postprocessing
ωreco

SSS ,λλλ,θ̃θθ
(uuu test). The ground truth ccc test is show in the last row. The

NRMSD is displayed in the upper left part of each reconstruc-
tion.

III. Results

Reconstruction results for an example test dataset are
shown in Figure 2. One can see that the best image for
the pre-reconstructions depends on the chosen λwhen
changing the SNR class. For instance, the first SNR class
requires a very high regularization parameter λ1 while
the optimal regularization parameter for SNR class 3 is
λ2 and for SNR class 7 is λ4. In comparison, the neural
network always yields the best image quality.

A quantitative analysis of all test data is outlined
in Figure 3. Shown are box plots for all pre- and
post-processing reconstruction methods and all con-
sidered SNR classes. One can see that the best pre-
reconstructions indeed depend on the considered noise
level. In ocher color, the statistics is summarized
by always taking the best reconstruction from all pre-
reconstructions based on the NRMSD. This can be con-
sidered to be an idealized case since a practice, no ground
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Figure 3: Box plot of the NRMSD for all 7 SNR classes and
different reconstruction algorithms outlined in the figure label.

Figure 4: Central slices (1st row: yz , 2nd row xz , 3rd row xy )
of the resolution phantom of the OpenMPIData set. First four
columns show the pre-reconstructions while the fifth column
shows the result of MPIPostProcNet.

truth is available. The MPIPostProcNet yields a better
result than this idealized case.

Reconstruction results for resolution phantom of the
OpenMPIData are shown in Figure 4. The neural net-
work successfully removes the noise present in the pre-
reconstructions while preserving the full resolution of
the reconstructions obtained for λ3 and λ4.

IV. Conclusion and Discussion

In summary, we have developed a novel neural network-
based post-processing method for improved image re-
construction in magnetic particle imaging. Our main
goal was to develop an automatic reconstruction algo-
rithm that does not require manual fine-tuning of reg-
ularization parameters. We achieved this by perform-
ing reconstruction with different regularization parame-
ters and combining the results with a data-driven learn-
ing approach. Our results show that the proposed MPI-
PostProcNet indeed yields very good results, both qual-
itatively and quantitatively. Compared to the best pre-
reconstruction, the results are even better for all SNR
values.
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For the robustnes of the method, it is important
that any of the regularization parameters used for
pre-reconstruction are somewhat close to the optimal
regularization parameter. Robustness could thus be
further increased by increasing the number of pre-
reconstructions. One drawback of our approach is the
increase in reconstruction time, which scales proportion-
ally with the number of pre-reconstructions L . However,
since the Kaczmarz reconstruction used is quite fast and
a small number of L = 4 is sufficient in our experiments,
the increase in computation time should be acceptable
when using a suitable multi-threaded implementation.

A characteristc of MPIProcNet is the simple architec-
ture, which can be easily integrated with existing MPI
reconstruction pipelines. Moreover, it would be easy to
adapt the method to different, potentially more sophisti-
cated pre-reconstruction methods. Finally, comparing
the network output to the pre-reconstructions allows one
to easily control the plausibility of the network output,
which makes it easy to develop trust in MPIProcNet.
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