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Abstract
System Matrix-based image reconstruction approach requires a time-consuming calibration measurement. Existing
methods such as compressed sensing and deep learning-based methods treat each row of the system matrix as
independent data sample and lack the ability to model the relationships between system matrix rows. We firstly
propose to model system matrix row relationships by the coil channel and frequency index, which can be regarded
as additional and multimodal information. We propose a transformer-based neural network for 3D fast system
matrix calibration, which encodes the information of coil channel and frequency index into system matrix with
self-attention mechanism in the transformer.

I. Introduction

System Matrix-based (SM) MPI image reconstruction
method [1] offer better image quality compared with X-
space-based approach, while it also brings much time
cost to measure the SM. Many methods based on com-
pressed sensing (CS) [2, 3] and deep learning [4, 5] have
been recently proposed to shorten the SM calibration
procedure.

However, despite the success of the previous works,
current fast SM calibration methods usually treat each
row of the system matrix as an independent data sam-
ple. This modelling approach neglects the relationships
between SM rows, while SM rows are not completely in-
dependent. For example, each SM row possesses two
extra information–frequency index and coil channel (i.e.,

Figure 1: The t-SNE visualization of SM rows. Each point
represents one SM row, and the color indicates its frequency
index.

which receive coil in XYZ directions does the SM row
comes from). We show a visualization result in openMPI
data (calibration #7) to illustrate it. The dimension of
each SM row are reduced by using t-SNE and we visu-
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Figure 2: The overall framework of the proposed method.

alize them separately in three receive coils (see Figure
1). The SM rows of similar frequency index are clustered
closer together, and this pattern is consistent in the three
spatial receive coils. This visualization result shows that
such information may help us to calibrate the SM.

In this paper, we propose a novel transformer-based
neural networks that can handle the multimodal infor-
mation for fast 3D SM calibration. The frequency index
and coil channel are embedded into space vectors and
involved in the self-attention calculation in the trans-
former.

II. Materials and Method

II.I. Dataset
The SM and phantom ("Resolution") data come from
the Open MPI1 dataset [6] following the previous work
[4]. The SM calibration experiment #7 with Synomag-
D is used for training set, and we evaluate the model
performance in calibration experiment #6 with Perimag.
We preserve only the SM rows with signal-to-noise ratio
(SNR) > 3 in both training and test datasets.

II.II. Model architecture and
implementation details

The overall framework of our proposed method can be
seen in Figure 2. The low resolution SM component
is encoded by pure transformer, with coil information
(i.e., frequency index and coil channel) involved in self-
attention calculation. Our proposed model contains four
transformer layers and two upsampling block. Each up-
samling block contains one upsampling module with tri-
linear interpolation and four 3D convolution operations.

1https://magneticparticleimaging.github.io/OpenMPIData.jl/latest/

Figure 3: The visualization for two frequency components.

The patch size is set as 1 and the hidden representation
dimension F is 1024. The number of heads is 8, and each
head dimension d is 128. The channels number c of
convolution operation is 64. We first train the model 10
epochs with linear warmup and then 100 epochs with
constant learning rate for 64 times downsampling (4x
downsampling ratio in three spatial dimension). For im-
age reconstruction, we use the standard kaczmarzReg
algorithm with parameter λ= 0.75 and iter = 3. We use
the same metrics with [4].

III. Result

III.I. SM calibration and image
reconstruction results

We first show the 3D SM calibration results in Table 1 in
terms of nRMSE metric. our model show great superi-
ority over other methods in terms of the metric nRMSE
(4.33% for 64 times downsampling). We also show the
recovered two SM rows (center slice) in Figure 3. Besides,
we assess the image reconstruction of "Resolution" phan-
tom in terms of pSNR and SSIM metrics. Our method
also achieves the best performance and has a relative
improvement of about 6% compared to the second best
method for the pSNR metric.
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Figure 4: The image reconstruction result for "Resolution"
phantom in OpenMPI dataset. The first row shows the center
slice of the reconstructed image, and the second row shows the
corresponding 3D error map averaged in z-axis.

Table 1: SM calibration and image reconstruction results
on OpenMPI dataset for 64 times downsampling. The met-
ric nRMSE is used to assess SM recovery and metric pSNR and
SSIM is used to assess image quality reconstructed by the SM.

Method nRMSE pSNR SSIM
bicubic 8.91% 55.34 0.9975
trilinear 6.80% 59.86 0.9993
CS 7.70% 57.39 0.9981
SRCNN [7] 5.18% 62.35 0.9996
VolumeNet [8] 5.90% 60.96 0.9995
3dSMRnet [4] 4.86% 64.85 0.9997
Ours 4.33% 65.55 0.9998

III.II. Visualization
We also visualize the reconstructed image to provide an
intuition evaluation. We show the center slice of 3D
images and the 3D error map averaged in z-axis in Fig-
ure 4. The baseline models generate low-quality image
reconstruction result with much noise and artifacts in
64x downsampling, while our proposed method still pro-
vides relatively better image quality.

IV. Conclusion and discussion
In this paper, we propose a novel transformer-based
model that utilizes the multimodal information (i.e., fre-
quency index and coil channel) for fast 3D SM calibra-
tion. Our results on the Open MPI datasets have shown
its effectiveness over other methods.

Though we firstly attempt to utilize the coil channel
and frequency index for SM calibration, the encoding
method for the two multimodal information in this work
may not be the optimal. It remains a open problem how
to leverage the multimodal information to model the
relationships between SM rows and generate better ac-
curacy. For example, SM rows can be modelled as nodes
in graph-format data, and the frequency index and coil
channel can be used for the edge modelling. Graph Con-
volution Networks (GCNs) [9, 10] are considered to show
superiority in such graph-format data mining.
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