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Abstract
For realizing multi-contrast MPI with different types of SuperParamagnetic Nanoparticles (SPN), reconstruction
of the particles’ core diameter distribution is required for various points in space. We propose a principle for
distinguishing signals from SPNs of different diameters, which exploits the offset field concept already used in
MPI. We show that precise reconstruction of Magnetization Curve (MC) is the key to precise reconstruction of core
diameter distribution, as all information about distribution is stored in the curvature. A Passive Mixer Model is
proposed in order to uniquely relate the MC to the intermodulation products in the magnetization spectra. The
model does not require small signal assumption and hence does not lose accuracy in the reconstruction under
large excitation fields. We show that a number of useful practical conclusions can be drawn from this model.

I. Introduction

The natural evolution of any contrast-based imaging
technique is ability to simultaneously detect several tar-
get analytes. Probing the nonlinearity of the magneti-
zation curve (MC) of superparamagnetic nanoparticles
(SPN) with magnetic particle spectroscopy (MPS) or fre-
quency mixing magnetic detection (FMMD) [4,5] allows
to extract concentration information (from amplitude)
and binding information (from phase) of several super-
paramagnetic nanoparticle (SPN) species, opening up
new opportunities for multi-target magnetic immunoas-
says. We report a principle that exploits the non-linear
properties and asymptotic nature of MC to separate sig-
nals from SPNs of different core size diameters. A simi-
lar principle is utilized in Multi-Harmonic Atomic Force
Microscopy to distinguish between magnetic and non-
magnetic forces contribution of cantilever-sample in-
teraction [1]. We show that the key for multi-contrast
MPI measurement consists in precise reconstruction of
the MC. As further elaboration, a Passive Mixer Model

(PMM) is introduced. This model reduces the inverse
problem of MC reconstruction to system of linear equa-
tions. PMM allows to bypass the small signal assumption
that is usually done in analysis of nonlinear distortions
[2,4].

II. Signal Separation Principle

The statistical expectancy E{·} of the SPN sample mag-
netic moment m (B ) [Am2] depends on field B [T] can be
calculated by

E {m (B )}=
π

6
Np Ms

∫ ∞

0

d 3
cL

�

π

6

Ms d 3
c

kB T
B

�

ρd (dc )d dc

(1)
Where Np is number of particles, ρd (dc ) is probabil-
ity density function of particle magnetic core diam-
eter dc [m], Ms [A/m] is volumetric magnetization,
L (x)=coth (x ) − 1/x . Let’s assume two monodisperse
samples of SPNs of 7 nm and 15 nm. Their normalized
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Figure 1: Principle of signal separation from SPNs with differ-
ent core diameters

MCs are depicted in Fig. 1 (a) and (b), respectively.
Conventionally one can divide these curves into three

regions: the linear, non-linear and saturation. If excita-
tion signal stays in the linear region, no Non-Linear Har-
monics (NLH, i.e., higher order fundamental harmonics
and intermodulation products) occur, but the amplitude
of the Fundamental Harmonic (FH) is affected. In con-
trast, in the saturation region, FH is suppressed, but NLH
are not produced as well. In the non-linear region, NLH
appear. These regions have a pairwise independent in-
fluence on the signal. In practice, the amplitude of the
excitation field is limited from below by the SNR of the
measurement system. The resulting MC is a linear super-
position of the initial ones, see Fig. 1 (c). The non-linear
region of larger SPN overlaps with the linear region of
smaller SPN. In the non-linear region of smaller SPN,
larger SPN are already saturated. As the number of SPN
of each type changes, their contribution will change pro-
portionally. By analysing the asymptotes of the Langevin
curve, it can be shown that the approximate position of
the nonlinearity region of monodisperse particles can be
calculated by the formula

Bn (dc ) =
6kB T

πd 3
c Ms

4
p

15 (2)

When measured close to Bn , particles of dc diameter
make the greatest contribution to non-linearity. By
choosing initial SPN with distant Bn values and by ac-

curately reconstructing the MC, it is possible to inde-
pendently extract information about the concentration
of each individual particle type. The technical feasibil-
ity of independent concentration measurement of two
particle species mixture by measurement of nonlinear
distortions has been already demonstrated in our group
[5].

III. Passive Mixer Model

For precise reconstruction of the MC, a model that relates
the MC shape to the amplitudes of the FH and NLHs in
magnetization spectra is required. As the range of ap-
plicable magnetic fields [−Bma x , Bma x ] is practically lim-
ited by the field generator and the MC is always odd and
monotonously increase one can uniquely approximate
it with Chebyshev polynomials Tn (x ) of L terms.

m̂ (B ) =
L−1
∑

i=0

ai T2i+1 (B ) (3)

Let’s assume that excitation field consist of dc offset B0

and a couple of harmonic oscillators: B1 and B2. Such
definition covers most of ac-susceptometry based tech-
niques such as MPI, two-harmonic MPI, MPS and FMMD.

B (t ) = B0+B1s i n
�

2π f1t +θ1

�

+B2s i n
�

2π f2t +θ2

�

(4)

Assume that the particles respond to the external field
fast enough i.e. the effective relaxation timeτe f f is small
enough: τe f f � min(f 1

−1, f 2
−1). By substituting B (t )

into (3) and applying the multinomial expansion, one
can obtain general expression for magnetization signal
in terms of spectral line sum.

m̂ (t ) =
L−1
∑

i=0

ai
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2

i
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f1 (k1−k2)+ f2 (k3−k4)
��

(7)

Using (5) it is possible to obtain a polynomial expression
for an arbitrary harmonic ft = bf1+cf2 for ∀b, c ∈ Z. To
do that one should solve the subset-sum problem for
each it h polynomial coefficient by calculating a set Si of
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k-vectors that fulfil:

Si (b , c ) =

�

−→
k |k1, k2, . . . , k5 ∈Z≥ 0∧k1−k2 = b ∧k3

−k4 = c ∧
5
∑

l=1

kl = 2i +1

�

(8)

The subset sum problem can be solved by dynamic pro-
gramming methods by iterating over the elements of a
unidirectional tree. In this way, only those elements that
contribute to the frequency ft . are selected from the
general sum. Then the measurement vector −→v can be
calculated.

−→v (B0, B1, B 2, b , c ) =

�

vi |vi =
2i +1

2

i
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(9)

Finally, the amplitude Ab f1+c f2
of ft harmonic in mag-

netization signal can be calculated by a scalar product:

−→v
�−→p

�

· −→a = Ab f1+c f2
(10)

where −→a = (ai |i ∈ {0,1, . . . , L − 1}) is a vector that con-
sists of polynomial approximation coefficients and −→p =
(B0, B1, B2, b , c ) is a vector in measurement parameter
space. In a real measurement system, some record-
ings might be taken simultaneously, e.g., measurement
of f 1, 3f 1 and 5f 1 in MPS, or of f 1±2f 2, f 1±3f 2, . . . in
FMMD. For a measurement process that consists of a set
D =

�−→p i |i ∈ {0, 1, . . . N }
	

of N recordings, the measure-
ment can be expressed as a system of linear equations.
MC reconstruction turns into a well investigated linear in-
verse problem. E.g., for simultaneous MPS measurement
of f 1, 3f 1 and 5f 1, such a matrix for single measurement
point looks as:
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IV. Numerical Simulation
To demonstrate the effectiveness of the approach, a nu-
merical simulation of 0D MPS signal acquisition was per-
formed. A binary mixture of SPN was defined by a prob-
ability mass function (Fig. 2) with parameters given in
Table 1. The MC for the mixture was calculated by using
(1). Excitation signal was calculated with time step of 5 µs.
Only f1 = 1 kHz was applied with amplitude B1 = 10 mT.
The dc offset component B0 varied from 0 to 100 mT in

Figure 2: Numerical investigation of reconstruction perfor-
mance

steps of 1 mT. For each point of excitation signal in Time
Domain (TD), the value of MC was interpolated. The
magnetization signal was digitally demodulated at f 1,
3f 1 and 5f 1 and averaged over 1 second of simulation
time.

At first, the distribution from the original MC was
reconstructed to evaluate the information loss due to
reconstruction process (“direct”). Then the MC was re-
constructed using PMM out of MPS TD simulation data,
once without noise (“MPS”) and once with noise (“MPS
w/ noise”). The number of polynomial coefficients was
selected to L = 16. Total number of rows in measure-
ment matrix was 300. The reconstruction range was
Bma x = max(B 0 + B1) = 110 mT. The MC was recon-
structed by 5 step procedure in which Bma x was linearly
increased and pseudo-inverse matrix was calculated.
This procedure is necessary to maintain the density of
Chebyshev approximation points as they are denser at
the edges and therefore reconstruction is more precise.
On each iteration the reconstructed MC points for larger
field values were appended to previous ones. In Figure
2, the raw reconstructed MC points are shown as dots.
At the joints of the segments (Figure 2, top and right in-
sets) the discrepancies can be seen. In contrast to “MPS”,
reconstruction “MPS w/ noise” was conducted with ad-
dition of gaussian noise applied in TD with zero mean
and standard deviation ofσ= 3.2 ·10−10 Am2 to imitate a
noisy environment. Finally, the susceptometry signal at
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Table 1: Parameters of original core diameter distribution.

Amount Mean FWHM
Sample 1 109 pcs. 9 nm 2 nm
Sample 2 25·107 pcs. 15 nm 1.4 nm

frequency f 1 of TD simulation was integrated to recon-
struct the MC in a conventional way (“susceptometric”)
and obtain the distribution.

The core diameter distribution is reconstructed us-
ing Non-Negative Least Squares approach with regular-
ization [2] by approximating (1) with a sum. In case of
“direct” reconstruction, the regularization parameter was
λ1 = 10−7, obtained by minimizing the error between
original and reconstructed distribution to show the per-
formance limit of the reconstruction algorithm. For
“MPS” and “MPS w/ noise” reconstructions, the param-
eter λ2 = 3 ·10−4 was obtained considering the amount
and position of extrema in solution.

V. Results and discussion
PMM (Eqs. 5-7) allows a number of useful conclusions to
be drawn under assumption of small effective relaxation
time τe f f : a) the NLH amplitude (10) is independent of
the excitation field phases θ f1

,θ f2
. b) The phase of any

NLH (6) is a linear combination of phases of excitation
fields: θb f 1±c f 2

= bθ f1
± c θ f2

. c) NLH amplitudes are
symmetric around FH f1and f2: Ab f1+c f2

= Ab f1−c f2
. d)

The higher the order |b|+|c| of NLH, the less information
it contains about the magnetization curve. e) The more
NLH are simultaneously measured, the more orthogo-
nal components are available. f) For MC reconstruction,
at least one measurement of FH should be conducted
(all Eq. (11)). Otherwise, the information about abso-
lute amount of SPN (scaling factor) is lost, but informa-
tion about relative amounts is still preserved. In more
general case, PMM is not valid, as for large relaxation
time τe f f >min

�

f −1
1 , f −2

1

�

, it becomes field-dependent
τe f f =τe f f (B0, B1, B2) [3].

Numerical simulation shows that for large realistic
FH amplitude and SPN core diameters, the conventional
susceptometry loses the information just at the place
with the highest non-linearity, where the information
about the SPN core diameters is retained (Fig. 2, left
bottom inset).

That results in smearing of the distribution and in-
ability to reconstruct particle concentrations separately.
With all other parameters unchanged, additional mea-
surement of 3f 1 and 5f 1 components allowed recovering
missing information by using PMM.

VI. Conclusions

PMM revealed a number of NLH properties and also
made it possible to circumvent the small-signal approxi-
mation, which in practice did not allow large amplitudes
to be used to achieve high SNR without losing recon-
struction precision. The next step is to determine the
optimum measurement scheme to extract the most com-
plete information about MC. In the future, the PMM and
its reconstruction principles could be used to solve the
inverse problem for realizing a multi-contrast MPI sys-
tem.
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