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Abstract
Various diseases and immune-related issues have been associated with the gastrointestinal system’s health. Gas-
trointestinal permeability - a measure of transport across the GI tract’s cell lining from the lumen - is a functional
parameter that is affected and is a viable factor in GI health assessment. Current diagnosis of GI-related disease
involves the use of invasive exploratory surgery to minimally invasive colonoscopy. Magnetic particle imaging (MPI)
is a non-radioactive and highly sensitive tracer imaging modality. The nanoparticle tracers used for MPI are FDA
approved and can readily be translated into the clinic. In this research, we provide the first proof-of-concept using
MPI to evaluate GI permeability in an in vitro model of the epithelial barrier lining of the GI tract.

I. Introduction

The health of the GI tract has implications for gut-related
disorders, brain health, immune health, and even the
successful outcome of immunotherapy treatments [1].
Studies have shown a link between a patient’s gut health
and their response to immunotherapy treatments. Over
the past decade, there has been an increasing discus-
sion on the correlation between altered intestinal per-
meability and chronic GI disorders like Inflammatory
Bowel Disease, Crohn’s disease, Ulcerative Colitis, and
even non-GI-related diseases like Alzheimer’s and Parkin-
son’s. Apart from food digestion and absorption, the GI
tract is home to many essential symbiotic bacteria that
help maintain good gut health and a protective mucus
lining. The intestinal barrier lining consists of mucus
layer(s), an epithelial layer, and immunological defenses.
This intestinal barrier performs two key functions: (a) It
must prevent bacteria and other infectious agents from

permeating through and triggering an immune response
(b) It must allow the passage of nutrients and absorption
of fluids [2]. If this intestinal barrier is compromised, it
can lead to pathological conditions - inflammation and
changes in the gut flora. Currently, there is no robust
standard test to measure GI permeability. In a standard
procedure, the ratiometric sugar assay of lactulose to
mannitol (L/M) concentrations is measured by collecting
urine for over 6 hours. However, both sugars are diuret-
ics and can alter GI permeability, introducing confounds
and rendering the test unreliable [3].

Minimally invasive imaging techniques of endoscopy
or colonoscopy are also used for GI health. These are
used to image the inside of the intestine to check for
ulcerations, inflammation and cancer. However, the pro-
cedure is uncomfortable, and patient participation in
screening is often abysmal. X-ray imaging provides high-
resolution anatomical features of the contrast-enhanced
GI tract, which seldom provides information on gut func-
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Figure 1: Magnetic Particle Imaging (MPI) is particularly useful
in imaging and diagnosis of tissues such as the GI tract and
lungs. (A) MPI is by far the most sensitive modality for detecting
the GI bleed [4] and (B) MPI images of tracer distribution in
the lung, also known as lung ventilation assessment [5].

tion or permeability. MPI is a tracer-based imaging
modality that can image superparamagnetic iron-oxide
(SPIO) tracers with excellent contrast and nanogram sen-
sitivity [6, 7]. MPI has zero tissue attenuation and zero
ionizing radiation. MPI tracers are FDA-approved and
can be used directly without laboratory preparation [8,
9] and are particularly useful to image organs like the
liver and lungs (Fig. 1). By measuring the clearance rate
of an oral dose of MPI tracers from the gut to the liver,
we can measure GI permeability and provide a means
of non-invasive and in-house diagnosis of a person’s gut
health. The GI tract can be imaged to see its outline, and
the health of the GI tract can thus be assessed. In this
research work, we evaluated GI permeability using an in
vitro model of the gut epithelium using MPI.

II. Methods and Materials

An intestinal in vitro model was set up using the Corn-
ing™ Costar™ Flat Bottom Cell Culture 6-well Mi-
croplates with Transwell mesh inserts of 0.4 µm pore
size (see Figure 2a). Perimag® (130 nm, Micromod Par-
tikeltechnologie GmbH, Germany) was used to evaluate
the permeability of the monolayer [10]. CT26 colon can-
cer cells were seeded onto the 0.4 µm mesh and incu-
bated in cell-culture media for 24 hours to ensure single
monolayer formation [11]. MPI tracers were added on
the apical side of the transwell membrane as shown in
Fig. 2a. The solutions in the apical and basolateral sides
of the membrane were collected at the end of 72 hours,
and the amount of iron that had permeated through was

Figure 2: In vitro model of GI permeability using a transwell
membrane and CT26 murine cells. (a) MPI tracers were loaded
onto the apical side of the monolayer, and the tracer’s perme-
ability across the cell monolayer was evaluated by sampling the
basolateral side. A sensitive in-house arbitrary waveform re-
laxometer was used to evaluate the amount of permeated MPI
tracer. (b) The point-spread function (PSF) of MPI signal on the
basolateral side with (active route, transcytosis) and without
(passive route) a cell monolayer after 72 hours incubation.

Figure 3: The in vitro transwell setup with the CT26 cell mono-
layer on the 0.4 µm mesh insert.
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Figure 4: The data shows the effect of iron loading on the
monolayer versus the amount of nanoparticles that permeated
across. At low loadings, the amount permeated increased with
the nanoparticle load. In contrast, at higher loading, the perme-
ation was purely limited by the cell monolayer and saturated
(as shown by the trendline through the data points).

evaluated. A non-monolayer setup was used as a control.
The MPI tracer signal and point-spread function

from both the apical and the basolateral side were mea-
sured using our in-house arbitrary waveform relaxome-
ter (AWR) with gradiometer shimming operating at 20 mT
amplitude and 20kHz frequency with a bias field sweep
from -60 to 60 mT. The signal obtained was reconstructed
using the x-space reconstruction algorithm, and the peak
signal of the PSF was used to determine the amount of
iron oxide that permeated through [12, 13].

III. Results and Discussion

Fig. 2b shows the PSF from the data obtained under
two experimental conditions: with and without the cell
monolayer. There are two mechanisms through which
nanoparticles cross the GI epithelial barrier. In the pas-
sive or paracellular route, nanoparticles cross through
the tight junctions between the epithelial cells barrier
due to a mere concentration gradient across the barrier.
While in the active or transcellular route, the nanopar-
ticles pass through the cells of the barrier in an active
phagocytic manner. We determined for our in vitro
model of GI permeability that the setup with cell mono-
layer mimicked the active or the transcellular route of
nanoparticle transport using our MPI system. While the
nanoparticle transport via the passive route is a gross
overestimate given the fact that the tight junctions are
relatively smaller (0.8-1.3 nm) than the 0.4 µm that was
currently tested out [14]. Next, we evaluated the dose de-
pendence and its effect on permeability. Figure 4 shows
the effect of varying amounts of iron from 83-1650 µg,
and the amount permeated measured using our arbi-

trary waveform relaxometer (AWR). The tracer permeat-
ing through the transmembrane seems to saturate at a
higher dose (> 165 µg, based on the trendline). While
at the lower doses, the permeation depended on the
amount loaded. This preliminary study informs us on
planning the translational work for evaluating gut health
in murine models subject to hyperpermeable GI disor-
ders.

IV. Conclusion
Our initial proof-of-concept in vitro study suggests that
nanoparticle tracers used in MPI can permeate across
the gut epithelium through the transcellular pathway.
However, we need to ascertain the finding further using
a blocking agent that prevents transcellular permeation.
Nevertheless, using MPI tracers that are FDA-approved, a
GI permeability study can be carried out in the clinic via
oral administration of MPI tracers. Estimating the MPI
tracer permeation across the GI epithelium to the liver
can be one of the first non-invasive methods to estimate
GI permeability and assess Gastrointestinal health.
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