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Abstract
Magnetic Particle Imaging (MPI) determines the distribution of superparamagnetic nanoparticles. Signal encod-
ing is achieved by moving a field-free point (FFP) through the volume of interest. Due to its simplicity the Cartesian
trajectory is used in many experimental scanner setups. One drawback of the Cartesian trajectory is that the spa-
tial resolution is anisotropic and in particular lower in the orthogonal excitation direction. In order to get fully
isotropic resolution one can extend the unidirectional Cartesian trajectory to a bidirectional Cartesian trajectory
that switches the excitation direction after a first pass over the volume of interest. When reconstructing each of the
unidirectional datasets using e.g. an analytical x -space approach, one obtains two images each having a higher
spatial resolution in the excitation direction. Within this work, we introduce a postprocessing method that com-
bines both images and calculates a combined image with fully isotropic spatial resolution.

I. Introduction

Magnetic Particle Imaging (MPI) enables the visual-
ization of superparamagnetic iron oxide nanoparticles
(SPIOs) [1]. SPIOs are excited by an externally applied
magnetic drive field (DF). Due to the non-linear particle
magnetization the recorded spectrum contains higher
harmonics that can be used for image reconstruction
[2]. Spatial encoding is achieved by applying an ad-
ditional static magnetic gradient field (selection field),
whose field strength is zero at a particular point called
the field-free point (FFP). By moving the FFP through
space a predefined field-of-view (FOV) can be sampled.

The path of the FFP is usually referred to as the sam-
pling trajectory. The achieved image quality and sam-
pling efficiency are both influenced by the trajectory

type. A comparison of five different trajectories [3] in
a simulation study reveals that the Lissajous and the
bidirectional Cartesian trajectory provide the best im-
age quality at similar repetition times. In practice, most
often Lissajous type trajectories [4] and unidirectional
Cartesian trajectories [5] are realized in experimental
scanner setups. A first bidirectional scanner has been
reported in [6].

The primary advantage of the bidirectional Carte-
sian trajectory over the unidirectional Cartesian trajec-
tory is to be found in the isotropic spatial resolution,
which is provided by the former one, while the latter
suffers from a reduced spatial resolution in the orthog-
onal direction to the fast FFP movement. This can be
explained by the nature of the MPI convolution kernel
that is significantly sharper in the direction of the FFP
movement than in the orthogonal direction. In [5] a fac-
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tor of 2.3 for the kernel anisotropy has been reported.
In the trajectory comparison done in [3] the data of

the entire trajectories has been used to perform a joint
reconstruction. While this is feasible for small FOV it is
of great computational effort for large sampling areas.
In contrast thereto, the unidirectional sampling trajec-
tory allows reconstructing data line by line and combin-
ing these in a postprocessing step. The image recon-
struction is thus reduced to a 1D problem, which is sig-
nificantly easier to handle. In [7] and [8] analytical re-
construction techniques for 1D imaging were developed
that either handle the data in Fourier space or in time
space. The mathematical equivalence of both meth-
ods has been shown in [9]. The time space methods
are usually referred to as x -space reconstruction tech-
niques and are very popular in various research works
[10–12].

When applying 1D reconstruction to bidirectional
Cartesian data one obtains two images both having
anisotropic spatial resolution in the orthogonal direc-
tion. Within this work we present a method to combine
both images to obtain a single isotropic high resolution
image. In [6] a very simple image combination has been
proposed that adds both images and applies a ’dehaz-
ing’ filter. We will derive an algorithm that is mathemat-
ically exact in case of a known resolution anisotropy.

II. Material and Methods
In this work, we consider two unidirectional datasets
with orthogonal excitation directions (x - and y -
direction). After reconstruction two 2D images are
generated, c x and c y , with the indices denoting the
respective excitation direction. Due to the anisotropic
FFP convolution kernel, the image c x is blurred along
the y -direction and c y is blurred along the x -direction.
Fig. 1 shows exemplary data that will be used through-
out this work. It should be noted that c x and c y may
be reconstructed using analytical techniques (e.g.
x -space reconstruction) or algebraic reconstruction
techniques [13]. The unidirectional Cartesian data may
be reconstructed line by line or by a joint reconstruction
approach [14].

From an image processing perspective we can model
the anisotropic spatial resolution within the images c x

and c y as a convolution of an isotropic resolution image
c with kernels K x and K y :

c x = c ∗K x , (1)

c y = c ∗K y . (2)

The point spread functions (PSF) K x and K y describe
the response of an imaging system to a point source. It
is highly important to note that K x and K y are not the
same as the FFP convolution kernel that is used dur-
ing the image reconstruction with a Chebyshev or x -

image c x image c y

Figure 1: Reconstruction results of two unidirectional Carte-
sian sampling trajectories with excitation in the x - (left) and
in the y -direction (right).

space approach. The images c x and c y are already cor-
rected for the convolution with the FFP kernel by an
appropriate deconvolution during image reconstruc-
tion. Alternatively in algebraic reconstruction tech-
niques Tikhonov regularization is used in order to ob-
tain a stable approximate solution and to avoid overfit-
ting.

Using the findings derived from the exemplary MPI
data shown in Fig. 1 we can specify the convolution ker-
nels K x and K y in more detail. In direction of the fast
FFP movement the kernels will be a Dirac delta since it
will not be possible to increase the spatial resolution in
that direction further. In a discrete setting the kernels
are thus exactly one pixel wide with a box like charac-
teristic. In the orthogonal direction the blurring can be
modeled by several different approaches. The convo-
lution kernel strongly depends on the choice of recon-
struction parameters and thus, has to be adapted for
different sets of acquisition and reconstruction param-
eters. Within this work we consider a Hann window

H (n ) =
1

2

�
1− cos
�

2π
n

N −1

��
, n = 0, . . . , N −1. (3)

The entries K x (l , j ) with l = 0, . . . , L − 1 and
j = 0, . . . , L −1 are thus given by

K x (l , j ) =

 H (l − ⌊ L2 ⌋+ ⌊N2 ⌋) , if |l − ⌊ L2 ⌋|< ⌊N2 ⌋∧ j = ⌊ L2 ⌋
0 , otherwise .

(4)

The floored rounding to an integer is defined by ⌊⌋ and L
is the number of line scans. The kernel K y is then de-
fined by K y = K T

x . The width of the kernel was empir-
ically determined and found to fit best for N = 7. Both
kernels are shown in Fig. 2.

The goal of this work is to combine c x and c y in a
way that the isotropic image c is restored. Based on
Eq. (1) and Eq. (2) an applied deconvolution to either c x

or c y may be supposed to be the way to go, but a signif-
icant increase in noise would be the consequence. Our
proposed method avoids this noise amplification.
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kernel K x kernel K y

Figure 2: Convolution kernels K x and K y that are used in
this work to model the anisotropic resolution of unidirectional
Cartesian MPI trajectories.

Using the Fourier convolution theorem Eq. (1) and
Eq. (2) can be written in Fourier space as multiplications

ĉ x = ĉ ⊙ K̂ x , (5)

ĉ y = ĉ ⊙ K̂ y , (6)

where⊙denotes the element-wise multiplication of two
matrices. For most kernels a closed form solution of
the Fourier transform will be available. In Fig. 3 the
Fourier transforms of the images and convolution ker-
nels of the exemplary MPI data are shown. As can be
seen the Fourier transforms ĉ x and ĉ y cover a rectan-
gular area in Fourier space with the short axis indicating
reduced spatial resolution in this direction. The rectan-
gular shape can be explained by the weighting of ĉ x and
ĉ y with K̂ x and K̂ y in Eq. (5) and Eq. (6). For low values
within K̂ x or K̂ y it is not possible to retrieve ĉ at these
frequencies due to noise amplification.

However, since the areas covered by ĉ x and ĉ y in
Fourier space are different it is possible to take the best
from both datasets to fill a larger area in Fourier space.
There are different ways in combining both datasets, but
we will use the most simple one that can be derived by
adding Eq. (5) and Eq. (6) yielding

ĉ x + ĉ y = ĉ ⊙ (K̂ x + K̂ y ). (7)

In image space this can be equivalently written as

c x + c y = c ∗ (K x +K y ). (8)

Fig. 4 shows the combined Fourier transformed images
ĉ x y := ĉ x +ĉ y and the corresponding combined Fourier
transformed kernels K̂ x y := K̂ x + K̂ y . Our proposal is
to use Eq. (7) and apply a deconvolution to determine c
from given ĉ x y and K̂ x y . The ill-posedness of the de-
convolution is highly reduced since the combined ker-
nel K̂ x y has only few areas in Fourier space that are
small. In this work we use a simple approach that re-
formulates Eq. (7) as

ĉ = ĉ x y ⊘ K̂ x y , (9)

ĉ x ĉ y

K̂ x K̂ y

Figure 3: Fourier transforms of the MPI images c x and c y and
the convolution kernels K x and K y .

ĉ x y K̂ x y

Figure 4: Combination of the Fourier transformed images
ĉ x and ĉ y to ĉ x y and corresponding combined Fourier trans-
formed kernel K̂ x y .

where ⊘ denotes the element-wise division of two ma-
trices. Since K̂ x y still has some areas with small values
we define a mask m that takes a value of 1 where K̂ x y

has values larger than 10% of its maximum and 0 oth-
erwise. This approach is also known as pseudoinverse
filtering. Our final reconstruction formula reads

ĉ deconv
x y = ĉ x y ⊙m ⊘ (K̂ x y ⊙m + (1−m )). (10)

Fig. 5 shows the mask m and the reconstructed Fourier
coefficients ĉ deconv

x y for the considered MPI data deter-
mined by evaluating Eq. (10).
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mask m reconstructed ĉ deconv
x y

Figure 5: Left: Mask m used to prevent noise amplification
due to small values in the combined Fourier transformed con-
volution kernel K̂ x y . Right: Reconstructed Fourier transform

ĉ deconv
x y .

Figure 6: Measurement phantom (left) and discrete sampling
schemes for the Cartesian trajectories with fast FFP movement
in the x -direction (middle) and in the y -direction (right).

III. Experiments

The measurements were carried out using a preclini-
cal MPI scanner (Bruker Biospin, Ettlingen). The mea-
sured phantom was a teflon cuboid of size 30 × 20 ×
20 mm3 with four holes arranged like an L (Fig. 6, left).
Each hole had a diameter of 1 mm and a depth of
15 mm and was filled with a SPIO-tracer (Resovist, I’rom
Pharmaceuticals, Tokio, Japan) with a concentration of
500 mmol(Fe)L−1. In our scan protocol (Fig. 6, mid-
dle and left) we performed L = 49 onedimensional line
scans with the scan line being shifted by a certain in-
crement (∆shift = 1 mm) after each scan. The ampli-
tude A = 14 mT and the gradient G = 0.75 T/m led to
a scan line of 37.3 mm length in the excitation direction.
For shifting the scan line orthogonal to the excitation di-
rection we used the so-called focus field [15, 16]. After-
wards, the excitation and the focus-field direction were
exchanged in order to acquire another L = 49 line scans
in the orthogonal direction. We performed a joint re-
construction to obtain the two Cartesian images, each
excited in one dimension, and the bidirectional Carte-
sian image. Along the scan lines the data are recon-
structed on a grid with 49 pixels such that the resulting
images are of size 49×49 with an isotropic pixel resolu-
tion of 1×1 mm2.

Image reconstruction was done in this work by the
algebraic approach. A system matrix is required for this
approach. Therefore, a small delta sample is shifted
through the FOV to determine the system matrix for
the individual line scans. The resulting linear system is
solved by minimizing a first order Tikhonov functional
using the iterative Kaczmarz algorithm with two itera-
tions and a manually tuned regularization parameter.

IV. Results

The first row of Fig. 7 shows the results of a deconvolu-
tion applied to either c x or c y , whereas the second row
presents the deconvolution result of the combined im-
age ĉ x y and the result of the joint reconstruction c joint

x y ,
where all scan lines of the bidirectional dataset are in-
cluded in one linear system of equations. It should be
noted that, in order to ensure a fair comparison be-
tween c deconv

x , c deconv
y , and c deconv

x y , we also used corre-

sponding masks for generating c deconv
x and c deconv

y as de-

scribed in Sec. II for generating c deconv
x y . Fig. 7 shows an

improvement in spatial resolution in the images c deconv
x

and c deconv
y compared to c x and c y , but both images

suffer from noise amplification along the orthogonal
FFP direction. This is not surprising since the unidi-
rectional kernels K̂ x and K̂ y have small values towards
marginal areas of their short axis, which raises the noise.
In contrast, c deconv

x y shows improved spatial resolution
with high SNR at the same time.

Fig. 8 gives a detailed impression of spatial resolu-
tion and noise. Shown are normalized profiles through
the images c x , c y , c deconv

x , c deconv
y , c deconv

x y , and c joint
x y .

The four upper plots show profiles through the vertically
aligned particle samples. The full width at half maxi-
mum (FWHM) for c x is 3.2 mm, whereas the FWHM for
c deconv

x is 2.6 mm. This confirms the visual impression
of the spatial resolution being improved by deconvolu-
tion. However, the gain in resolution stands against a
rise of noise. The third plot shows the profile through
the combined deconvolved image c deconv

x y . The FWHM

with 1.7 mm reveals best resolution for c deconv
x y . Further-

more, the noise level is low and comparable to c x . Same
observations can be made for the profiles through the
two horizontally aligned point probes that are shown in
the four lower plots of Fig. 8. If we now compare c deconv

x y

with the result of the joint reconstruction c joint
x y , both im-

ages look similar concerning the spatial resolution, but
the SNR with a value of 52 is higher for the combined
deconvolved image than the SNR of 25 for the joint re-
construction.

10.18416/ijmpi.2017.1703007 c⃝ 2017 Infinite Science Publishing

http://dx.doi.org/10.18416/ijmpi.2017.1703007


International Journal on Magnetic Particle Imaging 5

c deconv
x c deconv

y

c deconv
x y c joint

x y

Figure 7: Resulting images after deconvolution applied to ei-
ther c x (upper left) or c y (upper right), the deconvolution re-
sult of the combined image c deconv

x y (lower left), and the joint

reconstruction result c joint
x y (lower right).

V. Discussion
In this study we proposed a method to improve the spa-
tial resolution of bidirectional Cartesian MPI data us-
ing Fourier techniques. It was shown that in Fourier
space the information of both unidirectionally recon-
structed datasets can be combined to obtain an image
of isotropic spatial resolution. We compared the result
with the joint reconstruction approach and showed that
both techniques perform similarly concerning spatial
resolution. Regarding the noise the joint reconstruction
is worse by a factor of two.

Within this work we used a joint reconstruction ap-
proach [14] for the reconstruction of the unidirectional
MPI scans that leads to less ’hazing’ artifacts as has been
reported in [6] for separate scan line reconstruction.
Therefore our kernel for modeling the resolution loss in
the orthogonal direction was chosen to be a short Hann
window with seven pixels in length. When using sep-
arately reconstructed data it will be necessary to model
the ‘hazing‘ effect which is due to the long tail of the FFP
PSF in the orthogonal direction to the excitation direc-
tion.

The image combination algorithm proposed in this
work was applied to 2D imaging using bidirectional
imaging trajectories. For 3D imaging it is possible to use
tridirectional trajectories consisting of Cartesian sam-
pling with fast FFP movement in x -, y -, and z -direction.

y -profiles
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Figure 8: Profiles of the images shown in Fig. 7 through the
three particle dots in vertical direction (upper) and through
the two dots in horizontal direction (lower). Shown are the
datasets c x , c y , c deconv

x , c deconv
y , c deconv

x y , and c joint
x y .

It will be straight forward to apply the image combina-
tion method proposed in this work to the 3D case by us-
ing kernels being sharp along the excitation direction
and broad within the orthogonal imaging plane. The
applied Fourier techniques can be applied in the same
way to 3D data as for 2D data considered in this work.
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