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Abstract
In this work system-matrix based reconstruction in the context of magnetic particle imaging (MPI) is performed
using 2D simulated system matrices and phantoms to study the effects of different approaches in the econstruction
chain. As an example, multi color reconstruction at different temperatures is chosen to show how the approach
itself changes the reconstruction. It will be shown that a simple and trivial detail has important consequences for
the reconstruction algorithms not only halving the number of unknowns but also giving commonly used solvers for
the minimization problem a chance to converge to similar solutions.

I. Introduction

Reconstruction is an important step for every imaging
technology which uses an indirect measure to obtain
information about objects. For the reconstruction
an inverse problem must be solved. In the context of
magnetic particle imaging (MPI) the indirect measure
of the 3D particle concentration is the response of
the particles to a spatially dependent magnetic field
measured as an induced signal in the receive coils. To go
back from the measured signal to the spatial dependent
particle concentration the inverse problem needs to be
formulated and solved. In MPI there are two dominant
reconstruction approaches, x-space reconstruction, and
system-matrix based reconstruction. While the former
uses a model to describe the particle response and
algebraically reconstructs the concentration from the
measurement, the latter describes the imaging problem
as a system of linear equations using a system matrix,
typically obtained by measurement, that contains
the information about the particle concentration at
each voxel in the field of view under certain physical
conditions. An overview of recent developments in the
field can be found in [1–3] while a good discussion on
different system-matrix based approaches can be found
in [4].

II. Material and methods
This work focuses on the basics of system-matrix based
reconstructions and evaluates different approaches
based on their performance in a 2D multi-color scenario.
The data used as phantoms and for the system matrices
has been obtained by simulations as described in [5]. The
physics of the simulations itself is described in [6] and the
implementation can be found on GitHub [7]. The system
matrices have a size of 13x13 pixels but only the lower
half of it was simulated to shorten the total simulation
time. The upper half of the system matrix is obtained by
a phase shift of half a period and a sign change in one
of the magnetization components [8, 9]. Phantoms and
system matrices for different temperatures in the range
of 310−318 K in 2 K steps and a system matrix at 310 K
and 326 K have been simulated.
The basic equation for system-matrix based reconstruc-
tion is:

S~c = ~u (1)

With S being the system matrix containing the frequency
response of a delta sample at one voxel in each column,
~u being the frequency components of the measured
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signal and ~c being the vector of the spatial particle
concentration. This work will focus on how eq. 1 can be
set up to solve for ~c and what consequences arise for the
reconstructed images.
To solve eq. 1 different approaches will be used. The
most common one used in MPI is the Kaczmarz method
with Tikhonov regularization since it seems to work
best. Additionally, this work will also consider singular
value decomposition (SVD), as well as the conjugate
gradient normal residual (CGNR) method to solve the
minimization problem to obtain the desired spatial
distribution of concentrations, ~c . There are different
ways to set up eq. 1 for the different solvers. The most
common strategy (A) is as follows [1, 2, 10, 11]: Since
S and ~u are obtained via a fast Fourier transform
they are naturally elements of the complex numbers
while the wanted concentration vector consists of
positive real numbers. The latter is typically enforced
by setting Im(~c ) = 0 after one iterative step of the
solver. Strategy (B): Here S is a real matrix by simply
splitting the complex numbers in real and imaginary
part and appending them or solving the two equations
Re(S)~c = Re(~u ) ∧ Im(S)~c = Im(~u ) with ~c ∈ RN and N
being the number of pixels. In [4], real and imaginary
parts are split up for an SVD approach, however, the
implications of that strategy have not been discussed.
Strategy (A) and Strategy (B) are not equivalent since the
solvers for (A) will always look for a solution of the form
~c = ~cr + i ~ci which doubles the number of unknowns
and could potentially lead to wrong solutions. Consider
a problem with two solutions in the imaginary plane.
One solution at (-1,1) and another one at (5,0). Applying
the above solvers typically returns the solution nearest
to the origin, so they would end up finding the (-1,1)
solution. Since Im(~c ) is forced to be zero, the final
solution will be (-1,0) or (0,0) if positivity (~c ≥ 0) is also
enforced [12]. However, if the algorithm would have
been reformulated to only work with real numbers, the
solvers would have found the correct solution of (5,0).
In the next section, it will be shown how multi-color
reconstruction as proposed in [13] can be influenced
by applying the different strategies (A) and (B) for the
different solvers.

III. Results and discussion

Fig. 1 shows the multi-color reconstruction results for
the different solvers for a phantom at 326 K using strat-
egy (A). As shown, only the Kaczmarz method clearly
reconstructs a concentration difference in the different
temperature channels. This turns out to be connected
to where the constraint of Im(~c ) = 0 is applied within the
algorithms. While for SVD - as a direct solving method
- the constraint can only be applied on the result, for

Figure 1: Multi-color reconstruction of a phantom at 310 K
using complex numbers for the measured signal and system
matrices and forcing Im(~c ) = 0 after an iteration step. The Kacz-
marz method can force the restriction while solving single rows
of the inverse problem and shows a greater channel difference
than the SVD and CGNR method.

Table 1: Average and standard deviation of phantom and back-
ground pixels for Fig. 1

Kaczmarz SVD CGNR
phantom

c310 K

0.714
±0.046

0.599
±0.034

0.594
±0.035

phantom
c326 K

0.297
±0.051

0.415
±0.036

0.416
±0.037

background
c310 K

−0.021
±0.038

−0.002
±0.035

−0.002
±0.036

background
c326 K

0.020
±0.040

−0.002
±0.039

−0.002
±0.039

CGNR and Kaczmarz it can be applied within the iter-
ations. Furthermore, the Kaczmarz method allows the
constraint to be applied within one iteration of the ma-
trix itself solving a single row. Moving the constraint in
the Kaczmarz method out of this “inner” iteration to the
“outer” iteration yields a similar result as the SVD and
CGNR approaches showing a lower concentration dif-
ference in the two temperature channels. However, for
strategy (B) displayed in Fig. 2 it is observed that the dif-
ference in the reconstructed concentration channels is
independent of the used solvers. All methods yield a
similar difference between the two reconstructed chan-
nels which is even slightly bigger than the difference re-
constructed by the Kaczmarz method using strategy (A)
shown in Fig. 1. This indicates that the strategy (A) using
the Kaczmarz method has probably not found the opti-
mal solution for a real numbered concentration. To give
quantitative results the average and standard deviation
for the c310 K/c326 K phantom pixels and the correspond-
ing background pixels is calculated. Table 1 displays the
results for the reconstructions shown Fig. 1 while Table 2
contains the results for Fig. 2
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Figure 2: Multi-color reconstruction of a phantom at 310 K
using real numbers for the measured signal and system matri-
ces by appending real and imaginary parts. As can be seen, all
reconstructions yield a similar result. The observed difference
in the channels is slightly higher than for the Kaczmarz method
shown in Fig. 1.

Table 2: Average and standard deviation of phantom and back-
ground pixels for Fig. 2

Kaczmarz SVD CGNR
phantom

c310 K

0.737
±0.052

0.746
±0.055

0.746
±0.055

phantom
c326 K

0.274
±0.057

0.263
±0.061

0.263
±0.061

background
c310 K

−0.012
±0.043

−0.002
±0.041

−0.002
±0.041

background
c326 K

0.014
±0.045

0.003
±0.043

0.003
±0.043

IV. Conclusion
Solving eq. 1 in frequency space using system matrices
and signals containing complex numbers (strategy (A))
has been done since the first introduction of MPI in 2005
[10, 12, 14]. From the publications by various authors (e.g.
[1–3]) and the available implementations of reconstruc-
tion algorithms [11] it seems that the correctness of this
approach was not further questioned since it provided
plausible and expected results. This work shows that
another strategy should be used. Applying or injecting
restrictions like Im(~c ) = 0 [10] or ~c ≥ 0 [12]within/after
an iterative step are an improper modification with un-
known mathematical consequences. It can result in a
plausible solution, as generally observed in MPI, but this
shouldn’t be taken as proof that the approach is giving
the correct solution as demonstrated. Splitting up the
signal and system matrices by real and imaginary parts
as done in strategy (B) is the mathematical correct way
to solve eq. 1 in frequency space with ~c ∈RN . This not
only yields the expected result across different solvers,
but it is mathematically proven and reduces the number
of unknowns by a factor of two. Furthermore, the found

behavior for strategy (A) might indicate why the Kacz-
marz method is commonly to be believed to work best
on MPI datasets.
Additionally, it should be mentioned that eq. 1 can be
expressed and solved in the time domain. In this case,
system matrices and signals are already real numbers,
and no extra care must be taken. However, forcing
the restriction ~c ≥ 0 can also cause similar issue as
for Im(~c ) = 0. As such this work proposes to gener-
ally avoid forcing artificial mathematical restrictions by
setting the solution to fixed values and instead intro-
duce a mathematical expression/penalty term into the
optimization/minimization equation representing that
restriction or by reformulating the problem itself. For
Im(~c ) = 0 this was trivially achieved by splitting the prob-
lem in real and imaginary parts. For ~c ≥ 0 it can be
achieved by implementing a logarithmic barrier func-
tion into the optimization problem.

Notes
Kaczmarz, SVD and CGNR method used Tikhonov reg-
ularization with a regularization value of 10−3. For
Kaczmarz and CGNR methods 1000 iterations were
used. Signals and system matrices have not been fil-
tered/frequency selected since this is not necessary for
simulated data and could be introduced additional un-
certainty into the results. To obtain temperatures values
out of Fig. 1 and 2 a calibration of the multi-color recon-
struction needs to be performed. Since this is not the
main topic of this paper that step isn’t shown here. For
the CGNR method it was observed that it didn’t matter if
the constrained Im(~c ) = 0 is applied after each iteration
or at the end of all iterations. It yielded a similar result in
both cases.
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