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Abstract

Large collections of labeled data play a crucial role in supervised machine learning projects. Unfortunately, such
datasets are quite rare in the medical domain. In this work, the Julia project TrainingPhantoms.jlis introduced,
which provides a simple interface to generate large and diverse collections of randomly generated image phantoms.
The proposed phantom generator has been successfully used to train an image quality enhancement network that

managed to generalize to unseen experimental out-of-distribution data.

. Introduction

Data plays a crucial role in the development and valida-
tion of most downstream tasks such as reconstruction,
segmentation, denoising, or artifact reduction. Espe-
cially with the rise of machine learning methods in Mag-
netic Particle Imaging (MPI), the need for large labeled
datasets is becoming even more apparent. However, ap-
propriate datasets are only scarcely available in the med-
ical domain. Besides a few exceptions [1], training such
methods is hardly possible. The best known data collec-
tion in MPI, the OpenMPIData dataset [2], features vari-
ous measurements of system matrices (SM) and scans of
a few phantoms. However, corresponding ground truth
data for the phantoms is not readily available and the
size of the dataset is too small for training.

In the literature, various approaches with different
levels of realism have been used to satisfy the demand for
labeled training data, such as the MNIST dataset [3, 4],
which consists of handwritten digits, MRI angiography
data [5], simulated vessels [6], and randomly generated
phantoms of different geometric shape [7-9].
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To aid the generation of adequate phantom data, we
developed the Julia package TrainingPhantoms.jl' that
is able to generate large amounts of such phantoms with
huge flexibility.

Il. Methods and materials

The underlying requirement for the development of this
work was the need for a vast amount of image data that
closely resembles structures that are commonly encoun-
tered in MPI. Currently, generators for two types of struc-
tures are implemented. The first produces phantoms
consisting of multiple ellipses or ellipsoids, respectively.
Such structures are encountered directly after admin-
istering the tracer in form of a bolus or when enough
tracer has collected in certain organs. The second type
is meant to resemble blood vessels that are measured
during angiography. In the following, we introduce both
implemented types of phantoms, explain the underlying
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Figure 1: Surface rendering of a few randomly generated ellip-
soid and vessel phantoms.

design decisions, and give a brief overview over the most
important interface parameters.

Regardless of the type of phantom we wanted to have
an interface that allows us to generate phantoms flexi-
bly with regards to the specified grid size and dimension.
Additionally, with respect to reproducibility, randomized
routines are based on a seeded random number genera-
tor that can be passed as an additional parameter.

When it comes to the generation of ellipsoid phantoms
there are a few additional requirements to consider. First
of all, it should be possible to generate arbitrary number
of ellipsoid (parameter numODbjects) in a single phantom
image. Each of those ellipsoids is generated with ran-
dom size, rotation, placement within the field of view,
and intensity. It is possible to specify a minimal radius
(minRadiusPixel) to avoid degenerated ellipsoids in form
of a line with a width of a single pixel. Similarly, the min-
imal intensity (minValue) can be specified as well. This
can be useful to limit the dynamic range. The case that
multiple ellipsoids overlap each other can be handled
in two ways that are specified with the allowOcclusion
parameter. Thus, image intensity within the intersection
is either summed up or dominated by the ellipsoid with
the highest intensity. Lastly, it is ensured that no ellipsoid
intersects the image border, which can be even further
amplified by enforcing an empty margin at the border
(pixelMargin).

Ellipsoid phantoms

I1.1l. Vessel phantoms

The vessel phantoms are procedurally generated from
a given start point, orientation, and diameter. There
is a certain probability that the vessel either changes
its orientation (changeProb) or splits into two segments
(splitProb). The maximal angular change (maxChange)
and allowed number of splits (maxNumSplits) can be
limited as well. After a split, the further generation of
both vessels is then recursively invoked with a decreased
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diameter (splitDiameterChange). The generation of a
single vessel offshoot will eventually stop when it reaches
the image boundary.

I1l. Results and discussion

The proposed generators are capable of producing large
collections of diverse image phantoms (see Figure 1).
Whether these phantoms are good representations for
anatomical structures is difficult to assess. However, the
ellipsoid generator has already been used to train a neu-
ral network for automatic image reconstruction, which
successfully managed to generalized to actual measure-
ments of a distinctly different distribution [8].

IV. Conclusion

We introduced a Julia package that provides a simple
yet expressive interface for synthesizing vast amounts
of phantom images. The generated phantoms appear to
represent anatomical structures reasonably well and are
thus suited for the training of various machine learning
tasks. This package should be considered as a good start-
ing point for collaborative extension to include a variety
of clinically encountered structures.
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