International Journal on Magnetic Particle Imaging IJMPI
Vol. 8 No. 1 Suppl 1 (2022): Int J Mag Part Imag

Proceedings Articles

Magnetoviscoelastic models in the context of magnetic particle imaging

Main Article Content

Anja Schlömerkemper (University of Würzburg), Sourav Mitra (University of Würzburg)


Some mathematical models of magnetic particle imaging include the Landau-Lifshitz-Gilbert equation that is known to model the dynamic behavior of the magnetization vector in the micromagnetic theory. Bearing in mind the fluid-structure interaction of the magnetic particles in a viscoelastic environment like blood or tissue, we discuss a modeling approach of the underlying physics that takes a magnetoviscoelastic coupling into account. In particular, we discuss applicability of models for the evolution of magnetoviscoelastic materials consisting of the incompressible Navier-Stokes equations, an evolution equation for the deformation gradient and the Landau-Lifshitz-Gilbert equation. We also consider potential implications of recent work by the authors about two-component magnetoviscoelastic materials for an advanced mathematical modeling of magnetic particles embedded into viscoelastic materials.

Article Details


[1] B. Gleich, J. Weizenecker, Tomographic imaging using the nonlinear response of magnetic particles, Nature, vol. 435(7046), pp. 1214, 2005.
[2] T. Knopp, T.M. Buzug, Magnetic Particle Imaging: an Introduction to Imaging Principles and Scanner Instrumentation, Springer, 2012.
[3] B. Kaltenbacher, T. T. N. Nguyen, A. Wald, T. Schuster, Parameter identification for the Landau-Lifshitz-Gilbert equation in Magnetic Particle Imaging, arXiv:1909.02912.
[4] T. Kluth, P. Szwargulski, T. Knopp, Towards Accurate Modeling of the Multidimensional Magnetic Particle Imaging Physics, New Journal of Physics, vol. 21, pp. 103032, 2019.
[5] T. Kluth, Mathematical models for magnetic particle imaging, Inverse Problems, vol. 34(8), pp. 083001, 2018.
[6] J. Weizenecker, The Fokker-Planck equation for coupled Brown-Néel-rotation, Phys. Med. & Biol., vol. 63, pp. 035004, 2018.
[7] M. Kružík, A. Prohl, Recent Developments in the Modeling, Analysis, and Numerics of Ferromagnetism, SIAM Review, vol. 48, pp. 439-483, 2006.
[8] B. Benešová, J. Forster, C. Liu, A. Schlömerkemper, Existence of weak solutions to an evolutionary model for magnetoelasticity, SIAM J. Math. Anal., vol. 50, pp. 1200-1236, 2018.
[9] M. Kalousek, J. Kortum, A. Schlömerkemper, Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity, arXiv:1904.07179.
[10] M. Kalousek, A. Schlömerkemper, Dissipative solutions to a system for the flow of magnetoviscoelastic materials, arXiv:1910.12751.
[11] A. Schlömerkemper, J. Žabenský, Uniqueness of solutions for a mathematical model for magneto-viscoelastic flows, Nonlinearity, vol. 31, pp. 2989-3012, 2018.
[12] H. Sun, C. Liu, The slip boundary condition in the dynamics of particles immersed in Stokesian flows, Solid State Comm.,vol. 150, pp. 990-1002, 2010.
[13] M. Kalousek, S. Mitra, A. Schlömerkemper, Existence of weak solutions to a diffuse interface model for magnetic fluids, Nonlinear Analysis: Real World Applications, Vol. 59, 2021, 103243.
[14] M. Kalousek, S. Mitra, A. Schlömerkemper, Existence of weak solutions to a diffuse interface model involving magnetic fluids with unmatched densities, arXiv:2105.04291.

Most read articles by the same author(s)