International Journal on Magnetic Particle Imaging IJMPI
Vol. 9 No. 1 Suppl 1 (2023): Int J Mag Part Imag

Proceedings Articles

Core size analysis of magnetic nanoparticles using frequency mixing magnetic detection with a permanent magnet as an offset source

Main Article Content

Ali Mohammad Pourshahidi (Forschungszentrum Juelich), Andreas Offenhäusser (Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich, Germany), Hans-Joachim Krause (Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich, Germany)


Frequency mixing magnetic detection (FMMD) has been widely used in magnetic immunoassay measurement techniques. It can also be used to characterize and distinguish different magnetic nanoparticle (MNP) types according to their magnetic cores size. In a previous work, a method for resolving ambiguities in determination of the core size distribution was utilized involving measurement of total iron mass. Recently, a new FMMD measurement head was developed in which a pair of permanent ring magnets are used to generate the static offset magnetic field. Here, we show that this new measurement head can be applied for determining the core size distribution of MNP, and compare the results with the outcomes of our conventional electromagnet offset module FMMD.

Article Details


[1] Y.T. Chen et al., Biosensing Using Magnetic Particle Detection Techniques, Sensors 17, 2300, 2017. doi:10.3390/s17102300.
[2] K.M. Krishnan, Biomedical Nanomagnetics: A Spin Through Possibilities in Imaging, Diagnostics, and Therapy, IEEE Trans. Magn. 46, 2523–2558, 2010. doi:10.1109/TMAG.2010.2046907.
[3] Q.A. Pankhurst et al. Progress in Applications of Magnetic Nanoparticles in Biomedicine, J. Phys. D: Appl. Phys. 42, 224001, 2009. doi:10.1088/0022-3727/42/22/224001.
[4] D. Hurt et al., Versatile SQUID Susceptometer With Multiple Measurement Modes, IEEE Trans. Magn. 49, 3541–3544, 2013. doi:10.1109/TMAG.2013.2241029.
[5] D. Nieciecka et al., Synthesis and Characterization of Magnetic Drug Carriers Modified with Tb3+ Ions, Nanomaterials 12, 795, 2022. doi:10.3390/nano12050795.
[6] J. Lim et al., Characterization of Magnetic Nanoparticle by Dynamic Light Scattering, Nanoscale Res. Lett. 8, 381, 2013. doi:10.1186/1556-276X-8-381.
[7] S.E. Sandler et al., Best Practices for Characterization of Magnetic Nanoparticles for Biomedical Applications, Anal. Chem. 91, 14159–14169, 2019. doi:10.1021/acs.analchem.9b03518.
[8] S. Achtsnicht et al., Sensitive and Rapid Detection of Cholera Toxin Subunit B Using Magnetic Frequency Mixing Detection, PLOS ONE 14, e0219356, 2019. doi:10.1371/journal.pone.0219356.
[9] J. Pietschmann et al., Novel Method for Antibiotic Detection in Milk Based on Competitive Magnetic Immunodetection, Foods 9, 1773, 2020. doi:10.3390/foods9121773.
[10] U.M. Engelmann et al., Probing Particle Size Dependency of Frequency Mixing Magnetic Detection with Dynamic Relaxation Simulation, J. Magn. Magn. Mater. 563, 169965, 2022. doi: 10.1016/j.jmmm.2022.169965.
[11] A.M. Pourshahidi et al., Resolving Ambiguities in Core Size Determination of Magnetic Nanoparticles from Magnetic Frequency Mixing Data, J. Magn. Magn. Mater. 563, 169969, 2022. doi:10.1016/j.jmmm.2022.169969.
[12] A.M. Pourshahidi et al., Frequency Mixing Magnetic Detection Setup Employing Permanent Ring Magnets as a Static Offset Field Source, Sensors 22, 8776, 2022. doi:10.3390/s22228776.
[13] H.-J. Krause et al., Magnetic Particle Detection by Frequency Mixing for Immunoassay Applications, J. Magn. Magn. Mater. 311, 436–444, 2007. doi:10.1016/j.jmmm.2006.10.1164.
[14] A.M. Pourshahidi et al., Multiplex Detection of Magnetic Beads Using Offset Field Dependent Frequency Mixing Magnetic Detection, Sensors 21, 5859, 2021. doi:10.3390/s21175859.
[15] M. Kallumadil et al., Suitability of Commercial Colloids for Magnetic Hyperthermia. J. Magn. Magn. Mater., 321, 1509–1513, 2009, doi:10.1016/j.jmmm.2009.02.075.
[16] D. Shahbazi-Gahrouei et al., Superparamagnetic Iron Oxide-C595: Potential MR Imaging Contrast Agents for Ovarian Cancer Detection. J. Med. Phys. 38, 198, 2013, doi:10.4103/0971-6203.121198

Most read articles by the same author(s)