International Journal on Magnetic Particle Imaging IJMPI
Vol. 10 No. 1 Suppl 1 (2024): Int J Mag Part Imag
https://doi.org/10.18416/IJMPI.2024.2403019

Proceedings Articles

Magnetic Particle Fractionation and In-line Characterization for Enhancing Magnetic Particle Imaging Tracers

Main Article Content

Laura Kuger (Karlsruhe Institute of Technology), Elisa-Marie Lux (Karlsruhe Institute of Technology), Jochen Franke (Bruker BioSpin MRI GmbH), Philip Stoer (micromod Partikeltechnologie GmbH), Norbert Löwa (Physikalisch-Technische Bundesanstalt Berlin), Matthias Franzreb (Karlsruhe Institute of Technology)

Abstract

Refining the size distribution of magnetic nanoparticles (MNPs) holds great potential for enhanced performance in magnetic particle imaging (MPI). This work demonstrates the coupling of a preparative-scale magnetic fieldcontrolled
size fractionation technique with in-line magnetic particle spectroscopy (MPS) for the real-time assessment
of magnetic nanoparticle downstream processing performance. In-line magnetic particle spectroscopy
monitoring allowed for the concurrent evaluation of the amplitude spectrum and derived parameters including the
harmonic ratio A5/A3, enabling real-time selection of fractions with desired characteristics during the fractionation
process. Furthermore, magnetic particle spectroscopy offered increased sensitivity and more comprehensive
characterization capabilities than conventional in-line analysis techniques such as light absorption spectroscopy.
A theoretical model delineating the dependency of magnetic particle spectroscopy signal on core/shell size ratio
was developed. These results potentially have significant implications for prospective applications in the realm of
in-line magnetic particle spectroscopy analysis for real-time process control and quality assurance.

Article Details

References

1] D. Eberbeck, F.Wiekhorst, S.Wagner, and L. Trahms. How the size distribution of magnetic nanoparticles determines their magnetic particle imaging performance. Applied Physics Letters, 98(18), 2011, doi:10.1063/1.3586776.
[2] R. M. Ferguson, A. P. Khandhar, and K. M. Krishnan. Tracer design for magnetic particle imaging (invited). Journal of applied physics, 111(7):7B318–7B3185, 2012, doi:10.1063/1.3676053.
[3] J. Lohrke, Herstellung und Charakterisierung neuer nanopartikulärer Spio-Kontrastmittel für die Magnetresonanztomographie, PhD Thesis, Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, 2010,
[4] N. Löwa, P. Knappe, F.Wiekhorst, D. Eberbeck, A. F. Thünemann,and L. Trahms. Hydrodynamic and magnetic fractionation of superparamagnetic nanoparticles for magnetic particle imaging. Journal ofMagnetism and MagneticMaterials, 380:266–270, 2015, doi:10.1016/j.jmmm.2014.08.057.
[5] N. Löwa, F. Meier, R. Welz, H. Kratz, H. Paysen, J. Schnorr, M. Taupitz, T. Klein, and F. Wiekhorst. Novel platform for the multidimensional analysis of magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 518:167443, 2021.
[6] L. Kuger, C.-R. Arlt, and M. Franzreb. Magnetic/flow controlled continuous size fractionation of magnetic nanoparticles using simulated moving bed chromatography. Talanta, 240:123160, 2022, doi:10.1016/j.talanta.2021.123160.
[7] N. Löwa, P. Radon, D. Gutkelch, R. August, and F. Wiekhorst. Hyphenation of field-flow fractionation and magnetic particle spectroscopy. Chromatography, 2(4):655–668, 2015, doi:10.3390/chromatography2040655.
[8] C.-R. Arlt, A. Tschöpe, and M. Franzreb. Size fractionation of magnetic nanoparticles by magnetic chromatography. Journal of Magnetism and Magnetic Materials, 497:165967, 2020, doi:10.1016/j.jmmm.2019.165967.

Most read articles by the same author(s)

1 2 > >>