International Journal on Magnetic Particle Imaging IJMPI
Vol. 11 No. 1 (2025): Int J Mag Part Imag
https://doi.org/10.18416/IJMPI.2025.2508003

Research Articles, ID 918

Phase-sensitive signal processing in the DiffMag handheld probe

Main Article Content

Thom van Ommeren (University of Twente), Sebastiaan Waanders (Magnetic Detection & Imaging Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands), Tom Trapman (Magnetic Detection & Imaging Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands), Erik Krooshoop (Magnetic Detection & Imaging Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands), Bennie ten Haken (Magnetic Detection & Imaging Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands), Lejla Alic (Magnetic Detection & Imaging Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands)

Abstract

Sentinel Lymph Node Biopsy (SLNB) is a surgical procedure that employs a tracer and a handheld detection device to assess lymphatic metastasis. Superparamagnetic iron oxide nanoparticles (SPIONs) have been used as tracers, with handheld magnetometers utilised for detection. The differential magnetometry processing technique (DiffMag) effectively suppresses interference from stationary magnetic materials. However, movement of magnetic materials introduces signal artefacts---referred to as motion artefact---due to the sequential nature of the processing technique. Continuous manoeuvring of surgical equipment during SLNBs generates such artefact, potentially extending surgery time. To address this drawback, we propose an extension of DiffMag using phase-sensitive signal processing to measure phase lag---a property unique to signals from SPIONs. This extension demonstrates potential to differentiate SPION signals from motion artefacts. In this study, we examined phase lag across various SPION types (Magtrace, Resotran, Resovist, Ferrotrace) within clinically relevant parameter for SLNB, including low SPION concentrations and increased environmental viscosity. Implementing the processing technique in the DMH yielded highly stable phase measurements characterised by low noise levels and negligible drift. Notably, SPIONs across all tested conditions exhibited a distinct measurable phase difference to those of motion artefacts. In conclusion, phase-sensitive signal processing utilised in the DMH-probe demonstrates strong potential for differentiating SPION signals from motion artefacts.

Article Details

References

[1] T. P. Padera, E. F.Meijer, and L. L.Munn. The Lymphatic System in Disease Processes and Cancer Progression. Annual review of biomedical engineering, 18:125–158, 2016, doi:10.1146/annurevbioeng-112315-031200.
[2] M. K. Kim, H. S. Park, J. Y. Kim, S. Kim, S. Nam, S. Park, and S. I. Kim. The clinical implication of the number of lymph nodes harvested during sentinel lymph node biopsy and its effects on survival outcome in patients with node-negative breast cancer. American journal of surgery, 214(4):726–732, 2017, doi:10.1016/j.amjsurg.2016.10.019.
[3] J. J. Pouw, M. R. Grootendorst, J. M. Klaase, J. van Baarlen, and B. ten Haken. Ex vivo sentinel lymph node mapping in colorectal
cancer using a magnetic nanoparticle tracer to improve staging accuracy: a pilot study. ColorectalDisease, 18(12):1147–1153, 2016, doi:10.1111/codi.13395.
[4] L. Molenaar, M. M. Van De Loosdrecht, L. Alic, J. Van Baarlen, J. J. Meijerink, B. T.Haken, I. A. Broeders, andD. J. Lips.Quantification of Magnetic Nanoparticles in ex vivo Colorectal Lymph Nodes. Nano LIFE, 12(3), 2022, doi:10.1142/S1793984422500064.
[5] M. Douek, J. Klaase, I. Monypenny, A. Kothari, K. Zechmeister, D. Brown, L. Wyld, P. Drew, H. Garmo, O. Agbaje, Q. Pankhurst, B. Anninga, M. Grootendorst, B. Ten Haken, M. A. Hall-Craggs, A. Purushotham, and S. Pinder. Sentinel node biopsy using a magnetic tracer versus standard technique: the SentiMAGMulticentre Trial. Annals of surgical oncology, 21(4):1237–1245, 2014, doi:10.1245/s10434-013-3379-6.
[6] M. Visscher, S. Waanders, H. J. Krooshoop, and B. ten Haken. Selective detection of magnetic nanoparticles in biomedical applications using differential magnetometry. Journal of Magnetism and Magnetic Materials, 365:31–39, 2014, doi:10.1016/j.jmmm.2014.04.044.
[7] A. Piñero-Madrona, J. A. Torró-Richart, J. M. De León-Carrillo, G. De Castro-Parga, J. Navarro-Cecilia, F. Domínguez-Cunchillos, J. M. Román-Santamaría, C. Fuster-Diana, and R. Pardo-García. Superparamagnetic iron oxide as a tracer for sentinel node biopsy in breast cancer: A comparative non-inferiority study. European journal of surgical oncology, 41(8):991–997, 2015, doi:10.1016/j.ejso.2015.04.017.
[8] S.Waanders, M.Visscher,T.O.B.Oderkerk, H. J. G. Krooshoop, and B. ten Haken,Method and apparatus for measuring an amount of superparamagnetic material in an object, 2018.
[9] S. Waanders, M. Visscher, R. R. Wildeboer, T. O. Oderkerk, H. J. Krooshoop, and B. ten Haken. A handheld SPIO-based sentinel lymph node mapping device using differential magnetometry. Physics in Medicine and Biology, 61(22), 2016, doi:10.1088/0031-9155/61/22/8120.
[10] S. Salamzadeh, H. J. Krooshoop, B. tenHaken, and L. Alic. DiffMag handheld probe for perioperative lymph node harvesting. International Journal on Magnetic Particle Imaging IJMPI, 9(1 Suppl1), 2023, doi:10.18416/ijmpi.2023.2303052.
[11] E. R. Nieuwenhuis, N.Mir, M. M. Horstman-van de Loosdrecht, A. P.Meeuwis, M. G. de Bakker, T.W. Scheenen, and L. Alic. Performance of a NonlinearMagnetic Handheld Probe for Intraoperative Sentinel Lymph Node Detection: A Phantom Study. Annals of Surgical Oncology, 30(13):8735, 2023, doi:10.1245/S10434-023-14166-Z.
[12] L. Néel. Théorie du traînage magnétique des ferromagnétiques en grains fins avec application aux terres cuites. Annales de géophysique, 5:99–136, 1949.
[13] W. F. Brown. Thermal Fluctuations of a Single-Domain Particle. Physical Review, 130(5):1677–1686, 1963, doi:10.1103/PhysRev.130.1677.
[14] I. M. Perreard, D. B. Reeves, X. Zhang, E. Kuehlert, E. R. Forauer, and J. B. Weaver. Temperature of the magnetic nanoparticle
microenvironment: estimation from relaxation times. Physics in Medicine & Biology, 59(5):1109, 2014, doi:10.1088/0031-9155/59/5/1109.
[15] K. Wu, L. Tu, D. Su, and J.-P. Wang. Magnetic dynamics of ferrofluids: mathematical models and experimental investigations. Journal of Physics D: Applied Physics, 50(8):85005, 2017, doi:10.1088/1361-6463/aa590b.
[16] R. E. Rosensweig. Heating magnetic fluid with alternating magnetic field. Journal of Magnetism and Magnetic Materials, 252(1-3 SPEC. ISS.):370–374, 2002, doi:10.1016/S0304-8853(02)00706-0.
[17] P. Debye. Zur Theorie der spezifischen Wärmen. Annalen der Physik, 344(14):789–839, 1912, doi:10.1002/ANDP.19123441404.
[18] M. I. Shliomis and Y. L. Raikher. Experimental investigations of magnetic fluids. IEEE Transactions onMagnetics, 16(2):237–250, 1980, doi:10.1109/TMAG.1980.1060590.
[19] T. Wawrzik, T. Yoshida, M. Schilling, and F. Ludwig. Debye-Based Frequency-DomainMagnetizationModel forMagnetic Nanoparticles
in Magnetic Particle Spectroscopy. IEEE Transactions on Magnetics, 51(2):5300404, 2015, doi:10.1109/TMAG.2014.2332371.
[20] K. Riahi, M. M. van de Loosdrecht, L. Alic, and B. ten Haken. Assessment of differential magnetic susceptibility in nanoparticles:
Effects of changes in viscosity and immobilisation. Journal of Magnetism and Magnetic Materials, 514:167238, 2020, doi:10.1016/J.JMMM.2020.167238.
[21] F. Mohn, K. Scheffler, J. Ackers, A.Weimer, F.Wegner, F. Thieben, M. Ahlborg, P. Vogel, M.Graeser, and T. Knopp. Characterization of
the clinically approved MRI tracer resotran for magnetic particle imaging in a comparison study. Physics in medicine and biology, 69(13), 2024, doi:10.1088/1361-6560/AD5828.
[22] G. Krishnan, A. Cousins, N. Pham, V. Milanova, M. Nelson, S. Krishnan, A. Shetty, N. van den Berg, E. Rosenthal, S. Krishnan, P. J. Wormald, A. Foreman, and B. Thierry. Preclinical evaluation of a mannose-labeled magnetic tracer for enhanced sentinel lymph node retention in the head and neck. Nanomedicine: Nanotechnology, Biology andMedicine, 42:102546, 2022, doi:10.1016/J.NANO.2022.102546.
[23] A. Christenhusz, A. E.Dassen, M. C. van der Schaaf, S. Salamzadeh, M. Brinkhuis, B. t. Haken, and L. Alic. Magnetic procedure for sentinel lymph node detection and evaluation of metastases: design and rationale of the Lowmag trial. BMCMethods 2024 1:1, 1(1):1–13, 2024, doi:10.1186/S44330-024-00006-3.
[24] N. S. Cheng. Formula for the Viscosity of a Glycerol-WaterMixture. Industrial and Engineering Chemistry Research, 47(9):3285–3288,
2008, doi:10.1021/IE071349Z.
[25] R. Burton-Opitz and R. Nemser. The viscosity of lymph. American Journal of Physiology, 45(1):25–29, 1917, doi:10.1152/AJPLEGACY.1917.45.1.25.
[26] Y. Tang, B. Liu, Y. Zhang, Y. Liu, Y. Huang, andW. Fan. Interactions between nanoparticles and lymphatic systems:Mechanisms and applications in drug delivery. Advanced Drug Delivery Reviews, 209:115304, 2024, doi:10.1016/J.ADDR.2024.115304.
[27] D. F. Williams, C. M. Wang, and U. Arz. In-phase/quadrature covariance-matrix representation of the uncertainty of vectors and complex numbers. 2006 68th ARFTG Conference on Measurement for Emerging Technologies, ARFTG 2006, 2006, doi:10.1109/ARFTG.2006.8361655.
[28] D. B. Reeves and J. B.Weaver. Simulations of magnetic nanoparticle Brownian motion. Journal of Applied Physics, 112(12), 2012, doi:10.1063/1.4770322/354506.
[29] H. Rogge, M. Erbe, T. M. Buzug, and K. Lüdtke-Buzug. Simulation of the magnetization dynamics of diluted ferrofluids in medical applications. Biomedizinische Technik, 58(6):601–609, 2013, doi:10.1515/bmt-2013-0034.
[30] P. Arosio, F. Orsini, F. Brero, M.Mariani, C. Innocenti, C. Sangregorio, and A. Lascialfari. The effect of size, shape, coating and functionalization on nuclear relaxation properties in iron oxide core–shell nanoparticles: a brief review of the situation. Dalton Transactions, 52(12):3551–3562, 2023, doi:10.1039/D2DT03387A.
[31] M. Utkur, Y.Muslu, and E. U. Saritas. Relaxation-based viscosity mapping for magnetic particle imaging. Physics in Medicine & Biology, 62(9):3422, 2017, doi:10.1088/1361-6560/62/9/3422.
[32] Suriyanto, E. Y. Ng, and S. D. Kumar. Physical mechanism and modeling of heat generation and transfer in magnetic fluid hyperthermia through Néelian and Brownian relaxation: a review. BioMedical Engineering OnLine 2017 16:1, 16(1):1–22, 2017,
doi:10.1186/S12938-017-0327-X.
[33] L. He, L. Wenzhong, Q. Xie, S. Pi, and P. C. Morais. A fast and remote magnetonanothermometry for a liquid environment. Measurement Science and Technology, 27(2):025901, 2015, doi:10.1088/0957-0233/27/2/025901.
[34] K. J. Janssen, J. Zhong, T. Viereck, M. Schilling, and F. Ludwig. Quantitative temperature visualization with single harmonic-based magnetic particle imaging. Journal of Magnetism and Magnetic Materials, 563:169915, 2022, doi:10.1016/J.JMMM.2022.169915.

Most read articles by the same author(s)