International Journal on Magnetic Particle Imaging IJMPI
Vol. 11 No. 1 (2025): Int J Mag Part Imag
https://doi.org/10.18416/IJMPI.2025.2508004
Research Articles, ID 921
Advancing brain drug delivery: Focused magnetic hyperthermia and magnetic particle imaging for real-time BBB modulation
Main Article Content
Copyright (c) 2025 Hafiz Ashfaq Ahmad, Hohyeon Kim, Ji-Hye Kim, Kang-Ho Choi, Jungwon Yoon

This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
Abstract
The blood-brain barrier (BBB) is crucial for brain protection but limits therapeutic delivery for neurological disorders. This study utilizes magnetic hyperthermia (MH) to transiently and reversibly open the BBB, with magnetic particle imaging (MPI) enabling real-time, high-sensitivity monitoring. Using field-free point (FFP)-based focused heating, MH facilitated magnetic nanoparticles (MNPs) penetration into the brain and prolonged retention in the target area. Fluorescence imaging was confirmed on Evans blue staining to analyze BBB permeability immediately after MH, while MPI quantification revealed significant MNPs accumulation at target sites in focused-heated groups compared to non-heated controls. Fluorescence images further showed that BBB permeability restored after 24 hours, though MNPs retention persisted in heated regions for more than 72 hours. Fluorescence imaging confirms BBB permeability immediately after MH, while MPI provides both qualitative imaging and quantitative data on MNPs distribution and retention. These findings indicate that MPI can detect particle retention and distribution patterns that are not visible with Fluorescence imaging.
Article Details
References
[2] H. Gavilán, S. K. Avugadda, T. Fernández-Cabada, N. Soni, M. Cassani, B. T. Mai, R. Chantrell, and T. Pellegrino. Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chemical Society Reviews, 50(20):11614–11667, 2021, doi:10.1039/D1CS00427A.
[3] J.-H. Kim, M. Jeong, H. Kim, J.-H. Kim, J. W. Ahn, B. Son, K.-H. Choi, S. Chung, and J. Yoon. Focused magnetic stimulation for motor recovery after stroke. Brain Stimulation, 17(5):1048–1059, 2024, doi:10.1016/j.brs.2024.08.011.
[4] S. N. Tabatabaei, H. Girouard, A.-S. Carret, and S. Martel. Remote control of the permeability of the blood–brain barrier by magnetic heating of nanoparticles: A proof of concept for brain drug delivery. Journal of Controlled Release, 206:49–57, 2015, doi:10.1016/j.jconrel.2015.02.027.
[5] H. Kim, J. Kim, J. Kim, S.Oh, K. Choi, and J. Yoon. Magnetothermal-based non-invasive focused magnetic stimulation for functional recovery in chronic stroke treatment. Scientific Reports, 13(1):4988, 2023, doi:10.1038/s41598-023-31979-w.
[6] K. J. Chung, Y. G. Abdelhafez, B. A. Spencer, T. Jones, Q. Tran, L. Nardo, M. S. Chen, S. Sarkar, V. Medici, V. Lyo, R. D. Badawi, S. R. Cherry, and G. Wang, Quantitative PET imaging and modeling of molecular blood-brain barrier permeability, 2024. doi:10.1101/2024.07.26.24311027.
[7] C. Lu, L. Han, J. Wang, J. Wan, G. Song, and J. Rao. Engineering of magnetic nanoparticles as magnetic particle imaging tracers. Chemical Society Reviews, 50(14):8102–8146, 2021, doi:10.1039/D0CS00260G.
[8] D. J. Lundy, K.-J. Lee, I.-C. Peng, C.-H. Hsu, J.-H. Lin, K.-H. Chen, Y.-W. Tien, and P. C. H. Hsieh. Inducing a Transient Increase in Blood–Brain Barrier Permeability for Improved Liposomal Drug Therapy of Glioblastoma Multiforme. ACS Nano, 13(1):97–113, 2019, doi:10.1021/acsnano.8b03785.
[9] T.-A. Le, M. P. Bui, and J. Yoon. Development of Small-Rabbit-Scale Three-DimensionalMagnetic Particle Imaging System With Amplitude-Modulation-Based Reconstruction. IEEE Transactions on Industrial Electronics, 70(3):3167–3177, 2023, doi:10.1109/TIE.2022.3169715.
[10] T.-A. Le, Y.Hadadian, and J. Yoon. A prediction model for magnetic particle imaging–based magnetic hyperthermia applied to a brain tumor model. ComputerMethods and Programs in Biomedicine, 235:107546, 2023, doi:10.1016/j.cmpb.2023.107546.
[11] A. Dinari, H. Ashfaq Ahmad, M. P. Bùi, S. Oh, Y.-H. Kim, D.-H. Kim, and J. Yoon. Targeted Cellular Tracking of Pancreatic Cancer Cells via Magnetic Particle Spectroscopy (MPS). Bio-Algorithms andMed-Systems, 20(Special Issue):63–70, 2024, doi:10.5604/01.3001.0054.9363.
[12] A. Dinari, H. A. Ahmad, S. Oh, Y.-H. Kim, and J. Yoon. Advanced Detection of Pancreatic Cancer Circulating Tumor Cells Using Biomarkers andMagnetic Particle Spectroscopy. Nanotheranostics, 9(2):171–185, 2025, doi:10.7150/ntno.110074.
[13] J. J. Gevaert, J. Konkle, P. Goodwill, and P. J. Foster, Multichannel joint image reconstruction allows for artifact-free focused small field of view magnetic particle imaging, 2023. doi:10.1101/2023.06.22.545970.
[14] S. S. Natah, S. Srinivasan, Q. Pittman, Z. Zhao, and J. F. Dunn. Effects of acute hypoxia and hyperthermia on the permeability of the blood-brain barrier in adult rats. Journal of Applied Physiology, 107(4):1348–1356, 2009, doi:10.1152/japplphysiol.91484.2008.